完全背包(C语言)

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

当 i > 0 时dp[i][j]有两种情况:

1.不装入第i种物品,即dp[i−1][j],同01背包;
2.装入第i种物品,此时和01背包不太一样,因为每种物品有无限个(但注意书包限重是有限的),所以此时不应该转移到dp[i−1][j−w[i]]而应该转移到dp[i][j−w[i]],即装入第i种商品后还可以再继续装入第种商品。
所以状态转移方程为
dp[i][j] = max(dp[i−1][j], dp[i][j−w[i]]+v[i]) 
#include<stdio.h>
#define N 1005

int dp[N][N];  //dp[i][j]表示前i个物品,背包容量是j的情况下的最大价值。
int w[N];//记录每件物品的重量
int v[N];//记录每件物品的价值

int max( int a, int b)
    {
        return (a > b? a : b);
    }


int main()
{
	int n,m;
	scanf("%d %d",&n,&m);//n为物品,m为背包大小
	for(int i=1;i<=n;i++)
		scanf("%d%d",&v[i],&w[i]);
		dp[0][0]=0;
	for(int i=1;i<=n;i++)
	{
		for(int j=0;j<=m;j++)
		{
			dp[i][j]=dp[i-1][j];
			if(j>=v[i])
				dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);//注意此处转移到i不是i-1
		}
	}
	printf("%d",dp[n][m]);
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mcl19909949541

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值