有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
当 i > 0 时dp[i][j]有两种情况:
1.不装入第i种物品,即dp[i−1][j],同01背包;
2.装入第i种物品,此时和01背包不太一样,因为每种物品有无限个(但注意书包限重是有限的),所以此时不应该转移到dp[i−1][j−w[i]]而应该转移到dp[i][j−w[i]],即装入第i种商品后还可以再继续装入第种商品。
所以状态转移方程为
dp[i][j] = max(dp[i−1][j], dp[i][j−w[i]]+v[i])
#include<stdio.h>
#define N 1005
int dp[N][N];
int w[N];
int v[N];
int max( int a, int b)
{
return (a > b? a : b);
}
int main()
{
int n,m;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d%d",&v[i],&w[i]);
dp[0][0]=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
dp[i][j]=dp[i-1][j];
if(j>=v[i])
dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);
}
}
printf("%d",dp[n][m]);
return 0;
}