AnatoMask: Enhancing Medical Image Segmentation with Reconstruction-guided Self-masking摘要总结

引出自监督学习

问题:标记数据少

自监督学习(SSL

  • 思想:从没有标记的数据里学习到不同组织和器官的特征
  • 应用:三维医学图像分割

自监督学习中的传统MIM存在问题

自监督学习(SSL)里的MIM

  • 方法:重建 随机掩码图像(随机遮挡图像的某个部分)
  • 功能:学习细节表示
  • 问题:需要大量训练数据

对传统MIM进行改进

改进区域

随机掩码

  • 方法:均匀采样医学图像的所有区域
  • 问题:如果随机掩盖重要区域(比如心,肺等)会学习不到关键的特征->降低预训练的效率

改进

新的MIM方法AnatoMask

  • 方法:
    1. 计算机先重建图像的一部分,如果哪部分重建的不好(损失函数大),则那些区域很可能是重要的区域(因为重要的区域复杂难重建)
    2. 计算机记住这部分重建的不好的区域(重要区域),下一次优先掩盖这部分区域,让计算机专注于学习这部分区域的特征

其中利用的方法

自蒸馏方法
  • 自蒸馏方法是一种训练技术,涉及到两个网络:
    • 教师网络:处理输入数据,产生输出(比如哪部分区域是重要的,优先屏蔽)
    • 学生网络:尝试复制教师网络的行为(比如尝试找到哪部分区域是重要的 和 尝试重建重要区域)
掩蔽动力学函数
  • 作用:避免次优学习

**注释:**次优学习

  • 指的是计算机学习的效果不是最理想的,可能学习的都是最简单的或最难的

  • 在这里:计算机如果只学习重建简单区域,可能在遇到复杂区域时重建能力差

  • 方法:用掩蔽动力学函数(这个函数就像是老师)会根据计算机的学习情况来调整训练难度。

结果

  • 在4个具有多种成像模式(CT、MRI和PET)的公共数据集上评估
  • 与现有的SSL方法相比,AnatoMask展示了卓越的性能和可扩展性。
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值