华为昇腾Qwen2-VL-7B-Instruct模型训练微调推理

1 准备环境

检查设备驱动:

npu-smi info

在这里插入图片描述
可以看到设备的驱动版本是24.1.rc3。

2 下载模型

进入ModelScope魔搭社区下载通义千问2-VL-7B-Instruct模型
在这里插入图片描述
安装ModelScope包:

pip install modelscope

在这里插入图片描述
创建download.py文件:

touch download.py

或者编辑download.py文件:

vim download.py
# 模型下载
from modelscope import snapshot_download
# 可以根据需求修改下载模型的路径
model_dir = snapshot_download('Qwen/Qwen2-VL-7B-Instruct',cache_dir="/home/HwHiAiUser/")

运行download.py,将模型下载到指定目录/home/HwHiAiUser/。

python3 download.py

在这里插入图片描述

3 构建昇腾mindie环境

3.1 获取800I A2镜像

方法1:从昇腾镜像仓库的官方路径获取800I A2镜像。
在这里插入图片描述
方法2:从docker获取800I A2镜像。

  1. 安装docker
yun install docker
  1. 拉取镜像
docker pull swr.cn-east-317.qdrgznjszx.com/sxj731533730/mindie:1.0.T71-800I-A2-py311-ubuntu22.04-arm64

报错:
在这里插入图片描述
修改配置文件/ect/docker/daemon.json,修改配置源,并添加mindie的镜像源,同时将下载路径修改在/home/HwHiAiUser/docker中。

{
   
        "data-root": "/home/HwHiAiUser/docker",
        "insecure-registries": ["https://swr.cn-east-317.qdrgznjszx.com"],
        "registry-mirrors": ["https://docker.mirrors.ustc.edu.cn"]
}

重新启动docker服务,后继续拉取镜像:

systemctl restart docker.service

在这里插入图片描述

3.2 检查并编辑镜像启动脚本

查看docker的本地镜像,获取其中的REPOSITORY和TAG字段。
在这里插入图片描述
编辑快速启动Docker容器并配置运行环境的Shell脚本docker_run.sh,将其中的REPOSITORY和TAG字段以冒号的形式分隔,并填写到docker_images字段。(以下启动的是8卡容器)

#!/bin/bash
docker_images=swr.cn-east-317.qdrgznjszx.com/sxj731533730/mindie:1.0.T71-800I-A2-py311-ubuntu22.04-arm64
model_dir=/home/HwHiAiUser   # 可自定义挂载目录
docker run -it -u root --ipc=host --net=host \
        --name mindie_1 \
        --device=/dev/davinci0 \
        --device=/dev/davinci1 \
        --device=/dev/davinci2 \
        --device=/dev/davinci3 \
        --device=/dev/davinci4 \
        --device=/dev/davinci5 \
        --device=/dev/davinci6 \
        --device=/dev/davinci7 \
        --device=/dev/davinci_manager \
        --device=/dev/devmm_svm \
        --device=/dev/hisi_hdc \
        -v /usr/bin/hccn_tool:/usr/bin/hccn_tool \
        -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
        -v /usr/local/Ascend/add-ons/:/usr/local/Ascend/add-ons \
        -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \
        -v /usr/local/dcmi:/usr/local/dcmi \
        -v /usr/local/Ascend/driver/lib64/common:/usr/local/Ascend/driver/lib64/common \
        -v /usr/local/Ascend/driver/lib64/driver:/usr/local/Ascend/driver/lib64/driver \
        -v /etc/ascend_install.info:/etc/ascend_install.info \
        -v /etc/vnpu.cfg:/etc/vnpu.cfg \
        -v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
        -v ${model_dir}:${model_dir} \
        -v /var/log/npu:/usr/slog \
        ${docker_images} /bin/bash

3.3 启动镜像并进入容器查看环境是否可用

bash docker_run.sh

在这里插入图片描述
在这里插入图片描述
查看所有容器:

docker ps -a

在这里插入图片描述
启动容器:

docker start 00c

进入容器:

docker exec -it 00c /bin/bash

退出容器:

exit

停止容器:

docker stop 00c

在这里插入图片描述

4 使用LLaMa-Factory训练

4.1 下载并配置LLaMa-Factory环境

git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e '.[torch,metrics]'

在这里插入图片描述
在这里插入图片描述

4.2 编辑配置文件

  1. 从模板中拷贝配置文件:
cp examples/train_lora/llama3_lora_sft.yaml examples/train_lora/qwen2_VL_7B_Instruct_lora_sft.yaml

在这里插入图片描述
2. 修改配置文件:
LLaMA-Factory官网查找template。
在这里插入图片描述

### model
model_name_or_path: /home/HwHiAiUser/Qwen/Qwen2-VL-7B-Instruct
trust_remote_code: true
### method
stage: sft
do_train: true
finetuning_type: lora
lora_rank: 8
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
template: qwen2_vl
cutoff_len: 2048
max_samples: 1000
ove
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值