19 动态规划解最大正方形

文章介绍了如何使用动态规划方法在一个由0和1组成的二维矩阵中找到只包含1的最大正方形,并返回其面积。通过初始化dp数组并逐步更新,计算每个位置可能的正方形边长。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:在一个由'0'和'1'组成的二维矩阵内,找到只包含'1'的最大正方形,并返回其面积;

动态规划求解思路:定义dp[i][j]表示以i,j为右下角的正方形边长,如果[i,j]为1,则dp[i][j]=Math.min(Math.min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1;表示以[i,j]为右底的正方形需要满足左边,上边,中间的最小值。

public int getMaxSquare(int [][]matrix)
{
int [][]dp=new int[matrix.length][matrix[0].length];
if(matrix[0][0]==1)
{
dp[0][0]=1;
}else
{
dp[0][0]=0;
}
for(int i=1;i<matrix.length;i++)
{
if(matrix[i][0]==1)
{
dp[i][0]=1;
}else
{
dp[i][0]=1;
}
}
for(int i=1;i<matrix[0].length;i++)
{
if(matrix[0][i]==1)
{
dp[0][i]=1;
}else
{
dp[0][j]=0;
}
}
int max=Interger.MIN_VALUE;
for(int i=1;i<matrix.length;i++)
{
for(int j=1;j<matrix[i].length;j++)
{
if(matrix[i][j]==1)
{
dp[i][j]=Math.min(Math.min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1;
max=Math.max(dp[i][j],max);
}else
{
dp[i][j]=0;
}
}
}
​​​​​​​return max;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值