原题链接:公路修建 - 洛谷
思路:其实就是最小生生成树。想想看,如果有2的情况,即三个点ABC,离A最近的点为B,离B最近的点为C,离C最近的点为A。那么把三条边设为a,b,c,即要满足a < c && b < a && c < b,这个式子是不可能成立的。除非这个图形是个正n边形,那么随便删去一条边,每条边的长度是一样的,所以其实就无所谓。因此就是一个求最小生成树的问题而已。
注意一个地方!最后求的是double,那么可以先把平方和求出来放在那,最后加到ans的时候再把它强制转换成double然后sqrt,这样就不会有double和long long之间不知道怎么瞎转换的问题了。碰到求距离而且有要求精度的问题,可以先把距离用它的平方来表示,最后强制转换double然后sqrt。
ps:double输出小数的时候本身就是按照四舍五入的规则得到答案的
AC代码:
#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
#define ll long long
#define PII pair<int,int>
#define rep(i, n) for (int i = 1; i <= (n); ++i)
#define rrep(i, n) for(int i = n; i >= 1; ++i)
using namespace std;
const double pi = acos(-1.0);
const int N = 5005;
int n;
ll dist[N];
bool st[N];
double ans = 0;
struct node
{
double l, r;
}Node[N];
long long dis(int x, int y){
return (Node[x]. l - Node[y].l) * (Node[x]. l - Node[y].l) + (Node[x]. r - Node[y].r) * (Node[x]. r - Node[y].r);
}
void prim()
{
rep(i, n) dist[i] = 1e14;
for (int i = 0; i < n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
if (i) ans += sqrt((double)dist[t]);
st[t] = true;
for (int j = 1; j <= n; j ++ ){
if(!st[j]) dist[j] = min(dist[j], dis(t, j));
}
}
}
int main()
{
scanf("%d", &n);
rep(i, n) scanf("%lf %lf", &Node[i].l, &Node[i].r);
prim();
printf("%.2f\n", ans);
return 0;
}