- 博客(6)
- 收藏
- 关注
原创 pytorch学习笔记
对于二维张量,默认行为 (as_tuple=True) 的输出: (tensor([0, 0, 1]), tensor([0, 2, 2]))的第一个张量表示行索引,第二个张量表示列索引,一一对应即为值为0的元素的索引;使用 as_tuple=False 的输出: tensor([[0, 0], [0, 2], [1, 2]])二维张量的三个值分别对应值为0的索引。将input张量中的值都裁剪到[min,max]之间,小于min则变为min,大于max则变为max,区间内的不变。求取张量中元素的绝对值。
2025-08-05 15:49:54
265
原创 ERNIE微调项目总结(完)
前两篇文章分别介绍了项目的召回和排序,最后一部分即用召回部分和排序部分分别训练好的模型,对用户输入的query进行召回并对召回结果进行排序。6.对召回结果中的50个query,title对使用排序模块训练好的模型进行predct,然后根据得分进行排序。直接使用之前生成的索引库文件final_index.bin加载索引库。5.开始召回,并将召回结果以字典的形式存储。4.对用户输入的query进行数字序列化。2.载入训练好的recall模型。3.载入排序部分训练的预测模型。1.加载构建好的ANN索引库。
2025-07-29 15:38:15
487
原创 ERNIE微调项目排序部分小结
本篇文章主要完成项目的rank部分,即对预测结果进行排序,首先在ERNIE3.0的基础上,使用特定数据集进行训练,在训练的过程中,每100个epoche评估一次,最后在训练好的模型上对测试数据集进行预测,最后再对得分进行排序。故可知训练方法为,对pos_input_ids和pos_token_type_ids使用模型获得其cls,同理对neg获得其cls,然后分别求pos和neg的相似度得分,然后通过margin_ranking_loss来求loss。三、在test数据集中进行预测,并对结果进行排序。
2025-07-28 17:15:44
891
原创 ERNIE微调项目召回部分小结
get_semantic_embedding函数负责在评估模式下,不计算梯度时调用模型,用于后面的recall和评估模块。最后的forward函数为抽象函数,用于计算loss,分别对text0和text1对应的input_ids和token_type_ids调用get_pooled_embedding,然后对两个输出计算余弦相似度,得到相似度矩阵,为了增强模型效果,设置0.3的margin,对相似矩阵对角线上的元素减去0.3,再构造lable列表,将相似矩阵与lable传入交叉熵函数计算loss。
2025-07-24 11:32:35
1645
原创 pyhton c++学习随笔
c++排序函数,sort(),使用方法,以对nums数组排序为例,sort(nums.begin(),nums.end())。其中nums.begin()表示nums的首个元素,nums.end()表示nums最后一个元素的下一位,这两个元素限制了需要排序的范围,默认为升序,如果需要降序可以添加参数变为sort(nums.begin(),nums.end(), greater<int>())。在这些地方,std用来和编程人员自己定义的函数进行区别,防止编程人员自定义函数与标准函数同名时的错误。
2025-07-22 17:24:52
151
原创 Genesis团队为什么不在现有物理引擎基础上开发?
虽然像unity,unreal这些引擎已经非常成熟且高度优化,但它们更多的是为游戏开发服务,它们的架构是为实时渲染单个或少量复杂场景设计的,同时为了追求极致的视觉效果,游戏引擎拥有一套极其复杂的渲染管线。genesis的首要目标是为机器人提供一个真实快速的仿真环境,像unity,unreal的动作系统大部分都是预设的动画,只是看起来真实,而genesis的仿真数据需要用来训练机器人,因此需要更真实更物理的动作模块。因此,仿真平台只需要一个非常基础、简单的渲染器就足够了。总的来说,就两个词,性能,真实。
2025-07-18 11:45:01
248
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅