定义一个类SIN,求sin(x)=x/1-x^3/3!+x^5/5!-x^7/7!+......(-1)^(n+1)*x^(2n-1)/(2n-1)!

如题在这里插入图片描述

#include <iostream>
#include <cmath>
using namespace std;
class  SIN {
private:
	int x;
	int n;
public:
	SIN(int x1, int n1) {
		x = x1;
		n = n1;
	}
	int power(int q){
		int s = 1;
		int i = 1;
		for ( i ; i <= q; i++)
		{
			s = s * i;
		}
		return s;
	}
	int  mi(int m, int n) {
		return pow(m, n);
	}
	int fun();
	void show()
	{
		cout <<fun() << endl;
	}

}; 
int SIN::fun()
{
	int s1=0;
	int s;
	int i ;
	for (i=1; i <= n; i++)
	{
		s=mi(x, 2*i - 1) / power(2*i - 1);
		s1 = s + s1;
	}
	return s1;
}
int main() {
	class SIN  text(1, 1);
	text.show();
	return 0;
}

一些想法,如果fun函数的返回值是int型的话,误差太大了,因此我做了一些修订。

#include <iostream>
#include <cmath>
using namespace std;
class  SIN {
private:
	int x;
	int n;
public:
	SIN(int x1, int n1) {
		x = x1;
		n = n1;
	}
	int power(int q){
		int s = 1;
		int i = 1;
		for ( i ; i <= q; i++)
		{
			s = s * i;
		}
		return s;
	}
	float  mi(int m, int n) {
		return pow(m, n);
	}
	float fun();
	void show()
	{
		cout <<fun() << endl;
	}

}; 
float SIN::fun()
{
	float s1=0.00;
	float s;
	int i ;
	for (i=1; i <= n; i++)
	{
		s=mi(x, 2*i - 1) / power(2*i - 1);
		s1 = s + s1;
	}
	return s1;
}
int main() {
	class SIN  text(2, 3);
	text.show();
	return 0;
}

在这个修订里,我修改了s和s1,mi函数的返回值均为float。虽然和题意不符,但是精度更大。
运行图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值