L1-048 矩阵A乘以B (15 分)

L1-048 矩阵A乘以B (15 分)

给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra行、Ca列,B有Rb行、Cb列,则只有Ca与Rb
相等时,两个矩阵才能相乘。

输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。

输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb,其中Ca是A的列数,Rb是B的行数。

输入样例1:

2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8

输出样例1:

2 4
20 22 24 16
53 58 63 28

输入样例2:

3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72

输出样例2:

Error: 2 != 3
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<stack>
#include<queue>
#include<sstream>

using namespace std;
typedef long long ll;
const int N=110;

int a[N][N];
int b[N][N];
int c[N][N];

int main()
{
	int n1, m1, n2, m2;
	cin >> n1 >> m1;
	for(int i = 0; i < n1; i ++ )
		for(int j = 0; j < m1; j ++ )
			cin >> a[i][j];
	cin >> n2 >> m2;
	for(int i = 0; i < n2; i ++ )
		for(int j = 0; j < m2; j ++ )
			cin >> b[i][j];
	if(m1 != n2) printf("Error: %d != %d\n", m1, n2);
	else
	{
		for(int i = 0; i < n1; i ++ )
			for(int j = 0; j < n2; j ++ )
				for(int l = 0; l < m2; l ++ )
					c[i][l] += a[i][j] * b[j][l];
		cout << n1 << ' ' << m2 << endl;
		for(int i = 0; i < n1; i ++ )
		{
			for(int j = 0; j < m2; j ++ )
				if(j != m2 - 1) cout << c[i][j] << ' ';
				else cout << c[i][j] << endl;
		}
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在人间负债^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值