L1-048 矩阵A乘以B (15 分)
给定两个矩阵A和B,要求你计算它们的乘积矩阵AB。需要注意的是,只有规模匹配的矩阵才可以相乘。即若A有Ra行、Ca列,B有Rb行、Cb列,则只有Ca与Rb
相等时,两个矩阵才能相乘。
输入格式:
输入先后给出两个矩阵A和B。对于每个矩阵,首先在一行中给出其行数R和列数C,随后R行,每行给出C个整数,以1个空格分隔,且行首尾没有多余的空格。输入保证两个矩阵的R和C都是正数,并且所有整数的绝对值不超过100。
输出格式:
若输入的两个矩阵的规模是匹配的,则按照输入的格式输出乘积矩阵AB,否则输出Error: Ca != Rb
,其中Ca
是A的列数,Rb
是B的行数。
输入样例1:
2 3
1 2 3
4 5 6
3 4
7 8 9 0
-1 -2 -3 -4
5 6 7 8
输出样例1:
2 4
20 22 24 16
53 58 63 28
输入样例2:
3 2
38 26
43 -5
0 17
3 2
-11 57
99 68
81 72
输出样例2:
Error: 2 != 3
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<stack>
#include<queue>
#include<sstream>
using namespace std;
typedef long long ll;
const int N=110;
int a[N][N];
int b[N][N];
int c[N][N];
int main()
{
int n1, m1, n2, m2;
cin >> n1 >> m1;
for(int i = 0; i < n1; i ++ )
for(int j = 0; j < m1; j ++ )
cin >> a[i][j];
cin >> n2 >> m2;
for(int i = 0; i < n2; i ++ )
for(int j = 0; j < m2; j ++ )
cin >> b[i][j];
if(m1 != n2) printf("Error: %d != %d\n", m1, n2);
else
{
for(int i = 0; i < n1; i ++ )
for(int j = 0; j < n2; j ++ )
for(int l = 0; l < m2; l ++ )
c[i][l] += a[i][j] * b[j][l];
cout << n1 << ' ' << m2 << endl;
for(int i = 0; i < n1; i ++ )
{
for(int j = 0; j < m2; j ++ )
if(j != m2 - 1) cout << c[i][j] << ' ';
else cout << c[i][j] << endl;
}
}
return 0;
}