Nearest Beautiful Number

F1.F2. Nearest Beautiful Number

#739 (Div. 3)F2. Nearest Beautiful Number
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
It is a complicated version of problem F1. The difference between them is the constraints (F1: k≤2, F2: k≤10).

You are given an integer n. Find the minimum integer x such that x≥n and the number x is k-beautiful.

A number is called k-beautiful if its decimal representation having no leading zeroes contains no more than k different digits. E.g. if k=2, the numbers 3434443, 55550, 777 and 21 are k-beautiful whereas the numbers 120, 445435 and 998244353 are not.

Input
The first line contains one integer t (1≤t≤104) — the number of test cases. Then t test cases follow.

Each test case consists of one line containing two integers n and k (1≤n≤109, 1≤k≤10).

Output
For each test case output on a separate line x — the minimum k-beautiful integer such that x≥n.

  • 输入
    6
    2021 3
    177890 2
    34512 3
    724533 4
    998244353 1
    12345678 10
  • 输出
    2021
    181111
    34533
    724542
    999999999
    12345678

对于这道题目,我们首先要知道我们的思考策略,首先我们判断这个数字是不是需要进行更改操作,如果本身就已经满足条件,就可以直接输出,否则,我们找到需要更改的第一位数字,首先,我们要清楚自己的选择策略,并不是从高位开始,一个一个选,而是从低位到高位开始判断(check),然后对这一位,我们有p+1~9这些选择(这一位数字是p),之所以没有p是因为如果这一位我们不需要改,那么这并不符合我们一开始的判断,我们是寻找改变的第一位数字,然后对于第一位后面的数字,我们判断不同数字的数量和k的关系,如果小于k那么后面直接全部赋值为0,否则就选择可以选择的最小值

#include <bits/stdc++.h>
using namespace std;

bool vis[15];
int k;

int check(string s)
{
    int n = s.size();
    memset(vis, 0, sizeof vis);
    for (int i = 0; i <= n; i++)
        vis[s[i] - '0'] = 1;

    int sum = 0;
    for (int i = 0; i < 10; i++)
        if (vis[i])
            sum++;
    return sum;
}

string getans(string s,int num)
{
    int n = s.size();
    int z = check(s);
    if(z<k)
    {
        for(int i=0;i<num;i++)
            s+=to_string(0);
        
        return s;
    }
    int minn = 10;
    for (int j = 0; j < n; j++)
        minn = min(minn, s[j] - '0');

    for (int j = 0; j < num; j++)
        s += to_string(minn);

    return s;
}

int main()
{
    int T;
    cin >> T;
    while (T--)
    {
        int a;
        cin >> a;
        cin >> k;
        int n = to_string(a).size();
        string ans;
        if (check(to_string(a)) <= k)
            printf("%d\n", a);

        else
        {
            int fla=0;
            for (int num = 0;num<n&&fla!=1;num++)
            {
                int p = a % 10+1;
                for (int i = p; i < 10; i++)
                {
                    int t = a / 10 * 10 + i;
                    if (check(to_string(t)) <= k)
                    {
                        cout<<getans(to_string(t), num)<<endl;
                        fla=1;
                        break;
                    }
                    
                }
                a /= 10;
                
            }
        }

    }
}

下面是简单版本的题解,其实就是枚举每一个数,然后进行排序,二分寻找答案,然后输出,值得一提的是:在枚举的时候比较聪明的方法就是二进制枚举,还有边界9位数的界限问题

#include <bits/stdc++.h>
#define ll long long
const int N = 1e7 + 10;

using namespace std;

ll ans[N];
int cnt;
ll ans1[N];
void init()
{
    unordered_map<ll, bool> mp;
    for (int i = 0; i <= 9; i++)  //枚举第一个数字
    {
        for (int j = 0; j <= 9; j++)  //枚举第二个数字
        {
            for (int len = 1; len <= 9; len++)  //枚举数字长度
            {
                for (int k = 0; k < (1 << len); k++)  //这是每一种的排列情况
                {
                    int sum = 0;
                    int cc = 1;
                    for (int z = 0; z < len; z++)  //这是分析每一位的选择 01进行判断是选第一个还是第二个
                    {
                        if (k & (1 << z))
                            sum += i * cc;
                        else
                            sum += j * cc;
                        cc *= 10;
                    }
                    if (!mp[sum])  //防止重复
                    {
                        ans[++cnt] = sum;
                        mp[sum] = true;
                    }
                }
            }
        }
    }
    ans[++cnt]=1000000000;  //这是边界处理的情况因为最大9位数
    sort(ans + 1, ans + cnt + 1);
}

int main()
{
    init();
    int cnt1 = 0;
    for (int i = 1; i < 10; i++)
    {
        int sum = 0;
        for (int len = 1; len < 10; len++)
        {
            sum = sum * 10 + i;
            ans1[++cnt1] = sum;
        }
    }
    ans1[++cnt1]=1111111111;
    sort(ans1 + 1, ans1 + 1 + cnt1);

    int T;
    cin >> T;
    while (T--)
    {
        int n, k;
        cin >> n >> k;
        if (k == 1)
        {
            int cc = lower_bound(ans1 + 1, ans1 + 1 + cnt1, n) - ans1;
            cout << ans1[cc] << endl;
        }

        else
        {

            int cc = lower_bound(ans + 1, ans + 1 + cnt, n) - ans;
            cout << ans[cc] << endl;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pig2687

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值