机器人正在玩一个古老的基于DOS的游戏。
游戏中有N+1座建筑——从0到N编号,从左到右排列。
编号为0的建筑高度为0个单位,编号为 i 的建筑高度为H(i)个单位。
起初,机器人在编号为0的建筑处。
每一步,它跳到下一个(右边)建筑。
假设机器人在第k个建筑,且它现在的能量值是E,下一步它将跳到第k+1个建筑。
如果H(k+1)>E,那么机器人就失去H(k+1)-E的能量值,否则它将得到E-H(k+1)的能量值。
游戏目标是到达第N个建筑,在这个过程中能量值不能为负数个单位。
现在的问题是机器人至少以多少能量值开始游戏,才可以保证成功完成游戏?
输入格式
第一行输入整数N。
第二行是N个空格分隔的整数,H(1),H(2),…,H(N)代表建筑物的高度。
输出格式
输出一个整数,表示所需的最少单位的初始能量值上取整后的结果。
数据范围
1≤N,H(i)≤105,
输入样例1:
5
3 4 3 2 4
输出样例1:
4
输入样例2:
3
4 4 4
输出样例2:
4
输入样例3:
3
1 6 4
输出样例3:
3
这道题还是比较简单的,我观察到这好像是一个递增序列,二分法就直接解决了,我写了第一代版本,
#include<iostream>
using namespace std;
const int N=1e5+10,Mod=1e9+7;
int h[N];
int n;
bool check(int m)
{
long long mid=m;
for(int i=1;i<=n;i++)
{
if(h[i]>mid)
mid-=h[i]-mid;
else
mid+=mid-h[i];
mid%=Mod;
if(mid<0)
return false;
}
return true;
}
int main(void)
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&h[i]);
int l=0,r=1e5;
while(l<r)
{
int mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
cout<<l;
}
这个测试样例没过,我仔细观察了一下,原来是爆int了于是我改进了一下check函数。
#include<iostream>
using namespace std;
const int N=1e5+10,Mod=1e9+7;
int h[N];
int n;
bool check(int m)
{
long long mid=m;
for(int i=1;i<=n;i++)
{
if(h[i]>mid)
mid-=h[i]-mid;
else
mid+=mid-h[i];
if(mid>1e5+10)
return true;
else if(mid<0)
return false;
}
return true;
}
int main(void)
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&h[i]);
int l=0,r=1e5;
while(l<r)
{
int mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
cout<<l;
}
成功AC