Codeforces Round #762 (Div. 3) H Permutation and Queries

这篇博客介绍了如何使用分块双向链表处理数组排列的交换与查询操作。通过建立有向环并利用倍增表的思想,可以高效地进行操作。当交换两个元素时,需要更新环的结构,并暴力修改受影响的分块。对于查询操作,只需进行一定步数的跳跃即可得到结果。这种方法在解决大规模数据的动态查询问题时非常有效。
摘要由CSDN通过智能技术生成

H Permutation and Queries

题意:
给你一个 n ( 1 ≤ n ≤ 1 0 5 ) n(1≤n≤10^5) n(1n105) 个数的排列 p,你需要维护以下两种操作:

1 x y 1 x y 1xy :交换 p x p_x px p y p_y py
2 i k 2 i k 2ik :令 i = p i i=p_i i=pi k k k次后输出 i i i
操作数量小于等于 1 0 5 10^5 105

思路:
首先分析题目,考虑 从 i i i p i p_i pi 连接一条边,因为数组是排列,所以每个点 只有一条出边和一条入边,那么构成的图 就是一个个有向环。
对于操作二,很容易地想到 倍增表,但是题目附带修改操作,对于 倍增表的修改 需要很高的复杂度。所以考虑另一种 数据结构 分块,维护从当前点出发,走 n \sqrt n n 步后 到达的点,那么对于操作二,只需要 n \sqrt n n 次 就可以得到答案;接下来就是维护操作一了,对于操作一,交换两个数之后,可能两个环合并成一个,也可能一个环分裂成两个,对于图的变化,可以用 双向链表来实现;重要的是 图变化了之后,有些点 走 n \sqrt n n 步后 到达的点发生了变化,但是可以发现,发生了变化了的点,最多只有 x x x y y y n \sqrt n n 个前驱结点,暴力修改即可。

详情见代码啦:

#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<unordered_map> 
#include<set>
#include<algorithm>
using namespace std;
#define ll long long


const ll mod=1e9+7;
const ll maxn=1e7+5;
const ll INF=0x3f3f3f3f;
ll qp(ll x,ll y){
	ll ans=1;
	while(y){
		if(y%2)ans=ans*x%mod;x=x*x%mod;y/=2;}return ans;}
ll fmul(ll x,ll y){ 	//快速乘
    ll tmp=(x*y-(ll)((long double)x/mod*y+1.0e-8)*mod);
	return tmp<0?tmp+mod:tmp; 
}    
inline ll qread(){
    ll s=0,w=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar())if(ch=='-')w=-1;
    for (;ch>='0'&&ch<='9';ch=getchar())s=(s<<1)+(s<<3)+(ch^48);
    return (w==-1?-s:s);}
    
int n,m,q;
int to[100050][2];
int too[100050];
void link(int x){
	int y=x;
	for(int i=1;i<=m;i++)y=to[y][0];
	for(int i=1;i<=m;i++){
		too[x]=y;
		x=to[x][1];
		y=to[y][1];
	}
}
void update(int x,int y){
	int u=to[x][0];  
	int v=to[y][0];
	to[x][0]=v;to[y][0]=u;
	to[v][1]=x;to[u][1]=y;
	link(x);
	link(y);
}
int query(int x,int y){
	int now=0;
	while(now+m<=y){
		x=too[x];
		now+=m;
	}
	while(now<y){
		now++;
		x=to[x][0];
	}
	return x;
}
int main(){
	scanf("%d%d",&n,&q);
	m=sqrt(n);
	for(int i=1;i<=n;i++){
		scanf("%d",&to[i][0]);
	}
	for(int i=1;i<=n;i++){
		to[to[i][0]][1]=i;
	}
	for(int i=1;i<=n;i++){
		if(!too[i])link(i);
	}
	while(q--){
		int op,x,y;
		scanf("%d%d%d",&op,&x,&y);
		if(op==1){
			update(x,y);
		}else {
			printf("%d\n",query(x,y));
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值