django-Q对象的使用

本文介绍了Django ORM中Q对象的使用,包括基本的或条件查询和高级的模糊查询。通过示例展示了如何查询指定名称的用户,以及如何构造含有多个条件的查询表达式。此外,还提到了Q对象的嵌套使用,用于实现更复杂的查询需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.数据库的数据(不使用Q,全部查询出来)

a. 路由

​path('q_text/', views.QText, name='q_text'),

b. 表模型

class UserInfo(models.Model):
    username = models.CharField(verbose_name='名称', max_length=225)

    def __str__(self):
        return self.username

c .测试数据

# 1.不用Q查询数据,看看数据库有什么数据
    query_dic1 = models.UserInfo.objects.all()
    print(query_dic1)
    # <QuerySet [<UserInfo: 阿大>, <UserInfo: 阿二>, <UserInfo: 阿三>, <UserInfo: 大保健>]>

一:基本使用:

a.Q的基本作用:产生一个或的条件

b.代码验证

from django.db.models import Q
from app01 import models


def QText(request):
    """Q使用测试"""
    # 2.Q的基本使用,产生一个或的条件,进行查询
    # 查询名称叫,阿大或大保健的人,如果两个都存在,一起查询出来,如果有不存在的,会把查询存在的返回
    query_dic2 = models.UserInfo.objects.filter(Q(username='阿大') | Q(username='大保健'))
    query_dic3 = models.UserInfo.objects.filter(Q(username='阿大') | Q(username='zz'))
    print(query_dic2)
    # <QuerySet [<UserInfo: 阿大>, <UserInfo: 大保健>]>
    print(query_dic3)
    # < QuerySet[ < UserInfo: 阿大 >] >
    return HttpResponse('ok')

二:高级用法,案例构造模糊查询的条件

def QText(request):
    """Q使用测试"""
    # 实例化一个Q对象
    con = Q()
    # 构造或的条件,还可以构造 AND
    con.connector = 'OR'
    # 查寻什么
    q = '大'
    # 1.可以有多个条件 
    con.children.append(('%s__contains' % 'username', q))  # 2.类似username_contains --> username是数据库的字段
    # con.children.append(('%s__contains' % 'dec', q))
    # 查询名称包含大的数据
    query_dic4 = models.UserInfo.objects.filter(con)
    print(query_dic4)
    # <QuerySet [<UserInfo: 阿大>, <UserInfo: 大保健>]>
    return HttpResponse('ok')

三补充:

a . 可以进行多层嵌套,比如外面是or,里面是and

<think>好的,我现在需要回答用户关于PyTorch是否支持同时安装CPUGPU版本的问题。首先,我应该回顾一下PyTorch的安装机制。根据用户提供的引用资料,安装GPU版本的PyTorch通常需要特定的CUDA版本,并且用户可能需要通过不同的渠道获取对应的whl文件,比如从官网或镜像源下载[^2][^3][^5]。 接下来,我需要理解CPUGPU版本的区别。CPU版本是运行在处理器上的,而GPU版本需要NVIDIA的CUDA支持,利用显卡加速计算。两者在安装包上有不同的依赖项库文件,例如GPU版本会包含CUDA相关的库,而CPU版本则没有这些。 然后,我考虑是否可以在同一个环境中同时安装两个版本。根据经验,Python的包管理通常不允许同一个包的不同版本共存,因为包名称相同(如torch)会导致冲突。用户提供的引用中提到,如果强行安装不同版本的torch,可能会覆盖现有安装,导致不可预期的问题[^4][^5]。例如,如果先安装CPU版本,再安装GPU版本,后者会覆盖前者,反之亦然。 此外,用户可能需要同时使用两种环境的情况,比如在没有GPU的机器上运行CPU代码,而在有GPU的机器上运行加速代码。这时,使用虚拟环境(如conda或venv)分别创建独立的环境可能更合适。每个环境可以安装对应的PyTorch版本,避免冲突[^1][^3]。 还有一个考虑点是PyTorch的设计是否支持同时加载两个版本的库。通常,在运行时,PyTorch会检测可用的CUDA设备,并自动使用GPU版本。如果安装了GPU版本,即使代码中没有显式调用CUDA函数,PyTorch也会优先使用GPU资源。因此,同时安装两个版本不仅技术上不可行,也没有实际必要,因为GPU版本已经包含CPU功能。 最后,我需要总结这些信息,给出清晰的回答,并建议用户使用虚拟环境来管理不同版本的PyTorch,确保项目的兼容性稳定性。</think>PyTorch无法在同一个Python环境中同时安装CPUGPU版本。以下是具体分析及解决方案: ### 一、版本冲突机制 PyTorch的CPUGPU版本通过包名`torch`进行统一管理。安装时会根据后缀(如`cuXXX`表示CUDA版本)决定具体类型: - CPU版本:例如`torch-1.10.0-cp37-cp37m-win_amd64.whl` - GPU版本:例如`torch-1.10.0+cu113-cp37-cp37m-win_amd64.whl` 由于包名相同,后安装的版本会直接覆盖前一个版本[^4]。例如: ```bash # 先安装CPU版本 pip install torch==1.10.0 # 再安装GPU版本会导致覆盖 pip install torch==1.10.0+cu113 ``` ### 二、推荐解决方案 使用虚拟环境隔离不同需求: 1. **Conda环境管理**(推荐): ```bash # 创建GPU环境 conda create -n pytorch_gpu python=3.8 conda activate pytorch_gpu pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113 # 创建CPU环境 conda create -n pytorch_cpu python=3.8 conda activate pytorch_cpu pip install torch torchvision ``` 通过`conda activate`切换环境即可[^3] 2. **Docker容器方案**: ```dockerfile # GPU容器 FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime # CPU容器 FROM pytorch/pytorch:1.10.0-cpu ``` ### 三、版本兼容性验证 安装后可通过以下代码检测当前环境版本: ```python import torch print(torch.__version__) # 输出如1.10.0+cpu或1.10.0+cu113 print(torch.cuda.is_available()) # GPU版本返回True ``` ### 四、特殊需求处理 若需在GPU版本中使用CPU模式,可直接通过代码指定设备: ```python device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor = torch.randn(3,3).to(device) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骑台风走

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值