1. 空间复杂度
空间复杂度(space complexity)用于衡量算法占用内存空间随着数据量变大时的增长趋势。
统计哪些空间:
● 暂存数据:用于保存算法运行过程中的各种常量、变量、对象等。
● 栈帧空间:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
● 指令空间:用于保存编译后的程序指令,在实际统计中通常忽略不计。
而与时间复杂度不同的是,我们通常只关注最差空间复杂度。这是因为内存空间是一项硬性要求,我们必须确保在所有输入数据下都有足够的内存空间预留。
2. 如何推算
最差空间复杂度中的“最差”有两层含义:
● 以最差输入数据为准:当 n<10 时,空间复杂度为 O(1) ;但当 n>10 时,初始化的数组 nums 占用 O(n) 空间,因此最差空间复杂度为 O(n) 。
function algorithm(n) {
const a = 0; // O(1)
const b = new Array(10000); // O(1)
if (n > 10) {
const nums = new Array(n); // O(n)
}
}
● 以算法运行中的峰值内存为准:例如,程序在执行最后一行之前,占用 O(1) 空间;当初始化数组 nums 时,程序占用 O(n) 空间,因此最差空间复杂度为 O(n) 。
function constFunc() {
// 执行某些操作
return 0;
}
/* 循环的空间复杂度为 O(1) */
function loop(n) {
for (let i = 0; i < n; i++) {
constFunc();
}
}
/* 递归的空间复杂度为 O(n) */
function recur(n) {
if (n === 1) return;
return recur(n - 1);
}
在循环中每轮调用函数,会返回并释放掉栈帧空间,因此只会占用