1005 Minimum spanning tree
题目大意:
给你一个从2~N-1的排列,构建一个边权值最小的树,两个点的边权值为两个点数字的最小公倍数。
题解:
可以发现,对于某个数,如果这个数是合数,那么一定有一个质数和他的最小公倍数是这个合数本身。如果这个数是质数,则该数和2的最小公倍数最小。
所以结果显而易见,如果某个数是质数,就将其与根节点 2 连边,否则就与它的质因数连边,每条边的权值是两个点的最小公倍数。
跑个埃氏筛就行
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=1e7+5;
const int inf=0x3f3f3f3f;
bool prim[N];
ll ans[N];
void pri(){
for(int i=2;i<=N;i++)
{
if(prim[i]==0)
{
for(int p=2;p*i<=N;p++)
{
prim[i*p]=1;
}
}
}
prim[1]=1;
}
int main()
{
pri();
for(int i=3;i<=N;i++)
{
if(prim[i]==0)
{
ans[i]=ans[i-1]+i*2;
}else{
ans[i]=ans[i-1]+i;
}
}
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
cout<<ans[n]<<endl;
}
return 0;
}