题目描述
见acwing
数据范围
1≤n,m≤1051≤n,m≤105
输入样例:
8 3
aabbaabb
1 3 5 7
1 3 6 8
1 2 1 2
输出样例:
Yes
No
Yes
算法1
(字符串哈希) O(n)+O(m)O(n)+O(m)
全称字符串前缀哈希法,把字符串变成一个p进制数字(哈希值),实现不同的字符串映射到不同的数字。
对形如 X1X2X3⋯Xn−1XnX1X2X3⋯Xn−1Xn 的字符串,采用字符的ascii 码乘上 P 的次方来计算哈希值。
映射公式 (X1×Pn−1+X2×Pn−2+⋯+Xn−1×P1+Xn×P0)modQ(X1×Pn−1+X2×Pn−2+⋯+Xn−1×P1+Xn×P0)modQ
注意点:
- 任意字符不可以映射成0,否则会出现不同的字符串都映射成0的情况,比如A,AA,AAA皆为0
- 冲突问题:通过巧妙设置P (131 或 13331) , Q (264)(264)的值,一般可以理解为不产生冲突。
问题是比较不同区间的子串是否相同,就转化为对应的哈希值是否相同。
求一个字符串的哈希值就相当于求前缀和,求一个字符串的子串哈希值就相当于求部分和。
前缀和公式 h[i+1]=h[i]×P+s[i]h[i+1]=h[i]×P+s[i] i∈[0,n−1]i∈[0,n−1] h为前缀和数组,s为字符串数组
区间和公式 h[l,r]=h[r]−h[l−1]×Pr−l+1h[l,r]=h[r]−h[l−1]×Pr−l+1
区间和公式的理解: ABCDE 与 ABC 的前三个字符值是一样,只差两位,
乘上P的二次方把 ABC 变为 ABC00,再用 ABCDE - ABC00 得到 DE 的哈希值。
C++ 代码
#include
#include
#include
using namespace std;
typedef unsigned long long ULL;
const int N = 1e5+5,P = 131;//131 13331
ULL h[N],p[N];
// h[i]前i个字符的hash值
// 字符串变成一个p进制数字,体现了字符+顺序,需要确保不同的字符串对应不同的数字
// P = 131 或 13331 Q=2^64,在99%的情况下不会出现冲突
// 使用场景: 两个字符串的子串是否相同
ULL query(int l,int r){
return h[r] - h[l-1]*p[r-l+1];
}
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e5+5,P=131;
typedef unsigned long long ULL;
ULL p[N],h[N];
char str[N];
ULL count(int l,int r)
{
return h[r]-h[l-1]*p[r-l+1];
}
int main()
{
int a,b;
cin>>a>>b;
scanf("%s",str+1);
p[0]=1;
for(int k=1;k<=a;k++)
{
p[k]=p[k-1]*P;
h[k]=h[k-1]*P+str[k];
}
while(b--)
{
int l1 ,r1, l2, r2;
cin>>l1>>r1>>l2>>r2;
if(count(l1,r1)==count(l2,r2))
cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}