目录
题目
一个数如果恰好等于它的因子之和,这个数就称为“完数”。例如6 = 1+2+3.编程找出1000以内的所有完数。
问题分析
查找1000以内的“完数”,那么第一层循环就是从2递增到1000(1不是“完数”,直接从2开始),第二层循环就是查找每个数的因子,然后判断是否满足“完数”的特点。两种方法判断,第一种就是加法,第二种是减法。
加法:如果外层变量 i 对内层变量 j 取余为零,则 j 是 i 的因子,把 j 相加赋值给sum,最后判断sum是否等于 i ,等于则是“完数”,反之,不是。
减法:如果外层变量 i 对内层变量 j 取余为零,则 j 是 i 的因子,用 i 减去 j 赋值给x,最后判断 x 的值是否为零,若 i 为零则是“完数”,反之,不是。
易错点:
在加法中,定义sum的初始值的时候,不能在第一层for循环之外,因为sum是不同 j 的和,所以当每执行一次判断完之后,要将sum从新变成0,不然它就会一直累加。
在减法中,也是如此,x 的值也要在每执行完一次判断之后重新赋值 i (即改变 x 的值)。
代码
加法
#include<stdio.h>
int main()
{
int i, j,sum;//在这里定义sum的初始值为什么程序执行不正确
printf("完数有:\n");
for (i = 2;i < 1000;i++)
{
sum = 0;//在这里定义sum的初始值就可以正确执行
//sum是不同j的和,所以当我们外层循环每执行一次判断完之后,要将s从新变成0,否则它就会一直累加
for (j = 1;j < i;j++)
{
if ((i % j) == 0)
{
sum = j + sum;
}
}
if (i == sum)
{
printf(" %d ", i);
}
}
}
减法
int main()
{
int i, j, x;
printf("完数有:\n");
for (i = 2;i < 1000;i++)
{
x = i;
for (j = 1;j < i;j++)
{
if ((i % j) == 0)
{
x = x - j;
}
}
if (x == 0)
{
printf(" %d ", i);
}
}
}
测试结果