函数关于某直线对称点的性质

我们可以利用点和直线的对称性来推导函数关于直线的对称性。
假设直线的方程为 y = a x + b y=ax+b y=ax+b,点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 在直线上方程为 y 0 = a x 0 + b y_0=ax_0+b y0=ax0+b。我们设其对称点为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),则点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 和点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 关于直线 y = a x + b y=ax+b y=ax+b 对称,因此有:(1) 直线 y = a x + b y=ax+b y=ax+b 的垂线斜率为 − 1 a -\frac{1}{a} a1,过点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 的垂线方程为 y − y 0 = − 1 a ( x − x 0 ) y-y_0=-\frac{1}{a}(x-x_0) yy0=a1(xx0)。将其与直线 y = a x + b y=ax+b y=ax+b 求交点,得到对称点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 的坐标为: y 1 = a x 1 + b = a x 0 + b + 1 a ( x 0 − x 1 ) = y 0 + 1 a ( x 0 − x 1 ) \begin{aligned}y_1 &= ax_1+b \\&= ax_0+b+\frac{1}{a}(x_0-x_1) \\&= y_0+\frac{1}{a}(x_0-x_1)\end{aligned} y1=ax1+b=ax0+b+a1(x0x1)=y0+a1(x0x1)(2) 根据对称性,对称点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 上的函数值应该等于原点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 上的函数值,即: f ( x 0 ) = f ( x 1 ) f(x_0) = f(x_1) f(x0)=f(x1)现在我们要求得对称点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 的横坐标 x 1 x_1 x1,可以将 y 1 y_1 y1 的表达式代入上式中,得到: f ( x 0 ) = f ( x 1 ) ⇒ f ( x 0 ) = f ( y 0 + 1 a ( x 0 − x 1 ) ) f(x_0) = f(x_1) \quad \Rightarrow \quad f(x_0) = f(y_0+\frac{1}{a}(x_0-x_1)) f(x0)=f(x1)f(x0)=f(y0+a1(x0x1))由于 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 在直线上,所以有 y 1 = a x 1 + b y_1=ax_1+b y1=ax1+b,代入上式中,得到: f ( x 0 ) = f ( y 0 + 1 a ( x 0 − x 1 ) ) = f ( a x 1 + b + 1 a ( x 0 − x 1 ) ) f(x_0) = f(y_0+\frac{1}{a}(x_0-x_1)) = f(ax_1+b+\frac{1}{a}(x_0-x_1)) f(x0)=f(y0+a1(x0x1))=f(ax1+b+a1(x0x1))由于 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 是对称点,所以有 y 1 = f ( x 1 ) y_1=f(x_1) y1=f(x1),代入上式中,得到: f ( x 0 ) = f ( a x 1 + b + 1 a ( x 0 − x 1 ) ) = f ( 2 a x 0 − a 2 x 1 + 2 b ) f(x_0) = f(ax_1+b+\frac{1}{a}(x_0-x_1)) = f(2ax_0-a^2x_1+2b) f(x0)=f(ax1+b+a1(x0x1))=f(2ax0a2x1+2b)因此,对称点的横坐标 x 1 x_1 x1 可以通过以下方程求解: 2 a x 0 − a 2 x 1 + 2 b = x 0 2ax_0-a^2x_1+2b=x_0 2ax0a2x1+2b=x0解得: x 1 = 2 a x 0 + 2 b − x 0 a 2 = 2 a x 0 − 2 a b + 1 a 2 x 0 x_1 = \frac{2ax_0+2b-x_0}{a^2} = \frac{2}{a}x_0 - \frac{2}{a}b + \frac{1}{a^2}x_0 x1=a22ax0+2bx0=a2x0a2b+a21x0代入 ( 1 ) (1) (1) 式中,得到对称点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 的坐标: x 1 = 2 a x 0 − 2 a b + 1 a 2 x 0 y 1 = y 0 + 1 a ( x 0 − x 1 ) \begin{aligned}x_1 &= \frac{2}{a}x_0 - \frac{2}{a}b + \frac{1}{a^2}x_0 \\y_1 &= y_0 + \frac{1}{a}(x_0-x_1)\end{aligned} x1y1=a2x0a2b+a21x0=y0+a1(x0x1)这就是函数关于直线对称的公式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值