我们可以利用点和直线的对称性来推导函数关于直线的对称性。
假设直线的方程为
y
=
a
x
+
b
y=ax+b
y=ax+b,点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 在直线上方程为
y
0
=
a
x
0
+
b
y_0=ax_0+b
y0=ax0+b。我们设其对称点为
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1),则点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 和点
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1) 关于直线
y
=
a
x
+
b
y=ax+b
y=ax+b 对称,因此有:(1) 直线
y
=
a
x
+
b
y=ax+b
y=ax+b 的垂线斜率为
−
1
a
-\frac{1}{a}
−a1,过点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 的垂线方程为
y
−
y
0
=
−
1
a
(
x
−
x
0
)
y-y_0=-\frac{1}{a}(x-x_0)
y−y0=−a1(x−x0)。将其与直线
y
=
a
x
+
b
y=ax+b
y=ax+b 求交点,得到对称点
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1) 的坐标为:
y
1
=
a
x
1
+
b
=
a
x
0
+
b
+
1
a
(
x
0
−
x
1
)
=
y
0
+
1
a
(
x
0
−
x
1
)
\begin{aligned}y_1 &= ax_1+b \\&= ax_0+b+\frac{1}{a}(x_0-x_1) \\&= y_0+\frac{1}{a}(x_0-x_1)\end{aligned}
y1=ax1+b=ax0+b+a1(x0−x1)=y0+a1(x0−x1)(2) 根据对称性,对称点
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1) 上的函数值应该等于原点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 上的函数值,即:
f
(
x
0
)
=
f
(
x
1
)
f(x_0) = f(x_1)
f(x0)=f(x1)现在我们要求得对称点
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1) 的横坐标
x
1
x_1
x1,可以将
y
1
y_1
y1 的表达式代入上式中,得到:
f
(
x
0
)
=
f
(
x
1
)
⇒
f
(
x
0
)
=
f
(
y
0
+
1
a
(
x
0
−
x
1
)
)
f(x_0) = f(x_1) \quad \Rightarrow \quad f(x_0) = f(y_0+\frac{1}{a}(x_0-x_1))
f(x0)=f(x1)⇒f(x0)=f(y0+a1(x0−x1))由于
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1) 在直线上,所以有
y
1
=
a
x
1
+
b
y_1=ax_1+b
y1=ax1+b,代入上式中,得到:
f
(
x
0
)
=
f
(
y
0
+
1
a
(
x
0
−
x
1
)
)
=
f
(
a
x
1
+
b
+
1
a
(
x
0
−
x
1
)
)
f(x_0) = f(y_0+\frac{1}{a}(x_0-x_1)) = f(ax_1+b+\frac{1}{a}(x_0-x_1))
f(x0)=f(y0+a1(x0−x1))=f(ax1+b+a1(x0−x1))由于
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1) 是对称点,所以有
y
1
=
f
(
x
1
)
y_1=f(x_1)
y1=f(x1),代入上式中,得到:
f
(
x
0
)
=
f
(
a
x
1
+
b
+
1
a
(
x
0
−
x
1
)
)
=
f
(
2
a
x
0
−
a
2
x
1
+
2
b
)
f(x_0) = f(ax_1+b+\frac{1}{a}(x_0-x_1)) = f(2ax_0-a^2x_1+2b)
f(x0)=f(ax1+b+a1(x0−x1))=f(2ax0−a2x1+2b)因此,对称点的横坐标
x
1
x_1
x1 可以通过以下方程求解:
2
a
x
0
−
a
2
x
1
+
2
b
=
x
0
2ax_0-a^2x_1+2b=x_0
2ax0−a2x1+2b=x0解得:
x
1
=
2
a
x
0
+
2
b
−
x
0
a
2
=
2
a
x
0
−
2
a
b
+
1
a
2
x
0
x_1 = \frac{2ax_0+2b-x_0}{a^2} = \frac{2}{a}x_0 - \frac{2}{a}b + \frac{1}{a^2}x_0
x1=a22ax0+2b−x0=a2x0−a2b+a21x0代入
(
1
)
(1)
(1) 式中,得到对称点
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1) 的坐标:
x
1
=
2
a
x
0
−
2
a
b
+
1
a
2
x
0
y
1
=
y
0
+
1
a
(
x
0
−
x
1
)
\begin{aligned}x_1 &= \frac{2}{a}x_0 - \frac{2}{a}b + \frac{1}{a^2}x_0 \\y_1 &= y_0 + \frac{1}{a}(x_0-x_1)\end{aligned}
x1y1=a2x0−a2b+a21x0=y0+a1(x0−x1)这就是函数关于直线对称的公式。
函数关于某直线对称点的性质
最新推荐文章于 2025-04-22 15:22:14 发布