自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 Python将字符串全部转化为大写不使用Upper实现

Python将字符串全部转化为大写不使用Upper实现注意到在ASCII码表中小写字符和大写字符差值为32,只要读取字符串中每一个字符的ASCII大小并将其转化为大写字母的ASCII码区间即可实现。具体代码如下:userInput = input("请输入英文字符:") # 接受用户输入output = "" #存放输出结果for i in range(len(userInput)): #遍历字符串长度 if(ord(userInput[i])>=97 and ord(userInp

2022-03-12 14:13:50 2044

原创 数据结构学习笔记--线性表(顺序存储和链式存储)

线性表(顺序存储和链式存储)文章目录线性表(顺序存储和链式存储)一、线性表的定义二、顺序存储结构1.定义2.顺序存储结构的插入与删除获取元素操作插入操作删除操作时间复杂度分析3.顺序存储结构的优缺点三、链式存储结构1.定义头指针与头结点的异同2.单链表的各种基本操作读取元素插入元素删除元素整表创建整表删除3.单链表结构与顺序存储结构的比较总结一、线性表的定义线性表是零个或多个数据元素的有限序列。 线性表是一个序列,元素之间是有顺序的,并且线性表强调是有限的,即元素的个数是有限的。将线性表元素的个

2022-01-20 18:00:16 1113 1

原创 遥感影像非监督分类及其精度评估(基于ERDAS实现)

遥感影像非监督分类及其精度评估(基于ERDAS实现)非监督分类法在没有先验类别(训练区) 作为样本的条件下,即事先不知道类别特征的情况下,仅依靠影像上不同类地物光谱信息(或纹理信息等)进行特征提取,再采用聚类分析方法,将所有样本划分为若干个类别.这一过程也称为聚类(Clustering)。常用方法K-均值法(K-means algorithm)非监督分类:首先假设图像上的目标要分为C个类别,然后计算数据空间上均匀分布的初始类别均值,最后基于最小距离法进行迭代,把所有像元聚集到“距离最小”的类别中

2021-12-21 00:00:00 7461

原创 遥感图像辐射增强ERDAS实现

遥感图像增强辐射增强目的:逐像元进行灰度值的变换,以突出像元之间的反差(对比度),从而改善图像视觉效果、突出有用信息.(遥感图像的灰度增强法),抑制或排除无用信息。遥感图像灰度直方图介绍1.什么是灰度直方图一幅黑白图像往往由不同深度的灰色来描述图像,在计算机中常常采用八个比特位进行储存,所以通常用0-255来描述图像的灰度值,数值越大颜色越深。灰度直方图是描述图像中每个像元灰度值的分布情况,由此可以看出图像的特征,一般图像符合正态分布曲线所展示的效果最好,信息最多,图像的灰度直方图可以在MetaDa

2021-10-28 11:54:33 4190 1

原创 地理配准与矢量配准

地理配准与矢量配准地理数据矫正栅格数据通常是通过扫描纸质地图或采集航空及卫星照片获得 。通过扫描获取的影像不包含定义其地理空间位置所需的信息。航空及卫星照片所使用的坐标系统相对于通用GIS平台软件所使用的坐标系统是独立的。为了能够将这些影像数据与其它的数据集成,以便进行分析, 就必须对其进行处理:用户需要事先将这些数据校准(配准)到一个指定的地图坐标系地图数据来源主要来自于扫描仪,在扫描过程中会产生各种各样的误差,但所有这些扫描的误差引起的几何变形**,可看成平移、旋转、缩放、仿射、弯曲以及

2021-10-02 19:48:52 1665

原创 多波段 “均值标准距”的计算

多波段 “均值标准距”的计算核心算法基本流程1、多波段均值影像:erdas model/function/statistical/MEAN ( <arg1> , <arg2> , <arg3> , ... )2、多波段标准差影像:erdas model/function/statistical/SD ( <arg1> , <arg2> , <arg3> , ... )3、水体样本点在多波段均值/标准差影像上的像元值:a

2021-09-24 20:10:47 2053

原创 基于类别可分性的波段选择方法(单波段)

多光谱/高光谱遥感影像 最佳特征“波段”及其组合的选择方法基于类别可分性的波段选择方法高光谱遥感数据不仅具有一般常规遥感的空间特征,更重要的是具有连续光谱特性,因此,在最佳波段选择时可从基于空间维和光谱维的特性出发来考虑问题。从分类的角度来说,波段选择也就是特征子集的选择,即要从所有光谱波段中选择起主要作用的子集,该子集既能减小维数,又能保留所希望的感兴趣信息,并且易于区分所研究的地物。空间维在进行高光谱数据解译时,往往要分析不同地物类别之间在哪些波段或者波段组合上最容易区分,即要研究高光谱数据各波

2021-09-20 13:11:30 2885 2

原创 多光谱/高光谱遥感影像最佳特征“波段”及其组合的选择方法(含ERDAS进行OIF算法实现)

多光谱/高光谱遥感影像 最佳特征“波段”及其组合的选择方法遥感影像的特征波段选择1. 遥感波段选取的原则波段或波段组合信息含量的多少;各波段间相关性的强弱;研究区内欲识别地物的光谱响应特征如何最佳的波段及其组合:信息含量多、相关性小、地物光谱差异大、可分性好。2. 波段选择的方法基于信息量的波段选择方法基于类别可分性的波段选择方法基于信息量的波段选择方法最佳波段组合指数(OIF)​在ERDAS中进行OIF必要数据输出本文采用LANDSAT7的一幅影

2021-09-14 18:08:14 11397 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除