聚簇索引和非聚簇索引是数据库中索引的两种类型。聚簇索引(Clustered Index)指的是将数据存储和索引存储在一起,即索引的叶子节点存储着数据本身。这意味着数据行的物理顺序与索引的逻辑顺序一致。在数据库中,每个表只能有一个聚簇索引,因为在数据行本身只能按照一种方式物理存储。聚簇索引的一个优点是能够提高范围查找的性能,因为相邻的索引行通常也对应相邻的数据
行
。
非聚簇索引(Non-clustered Index)则是将索引和数据行分开存储的,索引的叶子节点存储着指向数据行的指针。这种索引类型在数据库中可以有多个,因为数据行的物理顺序与索引的逻辑顺序可以不一致。非聚簇索引能够提高查询的速度,尤其是在检索少量数据时较为高效。在实际应用中,需要根据具体的查询需求、数据量、更新频率等因素来选择使用聚簇索引还是非聚簇索引,以达到最佳的查询性能。
1.主键自动建立唯一索引
2.频繁作为查询条件的字段应该创建索引
3.查询中与其他表关联的字段,外键关系建立索引
4.频繁更新的字段不适合建立索引,因为每次更新不单单更新了记录还会更新索引
5.WHERE条件里用不到的字段不创建索引
6.单键和组合索引的选择问题,(高并发情况下适合创建组合索引)
7.查询中排序的字段,排序的字段若通过索引去访问将大大提高排序速度
8.查询中统计或者分组字段
1. 存储方式:数据行本身按照索引键的逻辑顺序进行存储,因此索引的叶子节点同时也存储着实际的数据行。
2. 只能有一个:每个表在大多数数据库系统中只能有一个聚簇索
引
。
3. 聚簇索引的优点:由于数据行的物理顺序和索引的逻辑顺序一致,因此范围查询的性能通常较好。
4. 缺点:当进行更新、删除等操作时,可能导致数据行的移动和重组,因此会带来额外的开销。非聚簇索引(Non-clustered Index):
1. 存储方式:索引和数据行分开存储,索引的叶子节点存储着指向实际数据行的指针。
2. 可以有多个:每个表可以有多个非聚簇索引,因为数据行的物理顺序和索引的逻辑顺序可以不一致
。
3. 优点:非聚簇索引适合于快速定位少量数据行,特别是在包含大量重复值的列上查询时效果显著。
4. 缺点:在进行范围查询时,性能可能不如聚簇索引,因为需要通过指针再次查询数据行。在实际应用中,需要根据具体的查询模式、数据的分布情况、数据更新频率等因素考虑选择适当的索引类型,以优化数据库的性能。
让我们以书架上的书来比喻数据库中的聚簇索引。假设有一个书架上摆放着各种书籍,书籍按照它们的主题分类并按照字母顺序排列。每本书的作者和书名都写在封面
上
。
在这个比喻中,书架上的书可以代表数据库表中的记录,而书籍的主题分类和排列顺序可以代表数据库中的聚簇索引。具体来说:- 聚簇索引就像书架上按照主题分类和顺序排列的书籍一样,它决定了数据在磁盘上的物理组织方式。例如,如果我们根据书名对书籍进行分类并排列,那么书架上的书籍的顺序将会按照书名的字母顺序进行排列。同样地,聚簇索引决定了数据库表中记录的物理存储顺序。- 当你需要查找一本书时,首先会在书籍的分类中找到相关的主题(比如小说、历史等),然后再在这个分类中按照书名的顺序找到你需要的书。在数据库中,如果你使用了聚簇索引,数据库引擎也能以类似的方式快速地找到你需要的数据。总之,可以将聚簇索引看作是数据库中存储数据的物理顺序,它使得相关数据按照索引的方式进行物理存储,从而在查找和检索数据时提供更快的性能。
非聚簇索引与聚簇索引在数据库中的作用和方式不
同
。
以书架的比喻继续,如果我们把书架上的书籍按照作者姓名的首字母进行排列,那么这个顺序就好比非聚簇索引。在这种情况下:- 非聚簇索引就像书架上按照作者姓名字母顺序进行排列的书籍索引一样。这个索引不改变书籍的物理顺序,只是为了更方便地找到相关的书籍。
- 当你需要查找一本特定作者的书时,你可以使用作者名的首字母索引来找到这位作者的书籍。在数据库中,非聚簇索引同样提供了一种更迅速地定位和查找数据的方式。总而言之,非聚簇索引允许数据库引擎按照非数据的物理存储顺序来创建索引,以提高查询的性能。与聚簇索引不同,它并不直接影响到数据的物理排列,而是提供了一种更方便的方式来快速查找数据。