RTSS-2022 Future Aware Dynamic Thermal Management in CPU-GPU Embedded Platforms
一、文章核心
文章提出了一种新的热管理策略,旨在解决异构CPU-GPU嵌入式平台在运行过程中遇到的高温问题。其核心贡献包括:
- 热模型构建:开发了一种分析热模型,可以预测在任务执行过程中平台的最高温度。
- 调度策略:提出了一种基于模型预测控制(MPC)的调度策略,并设计了一种启发式算法,可以在多项式时间内解决热管理优化问题。
- 框架实现:实现了一个基于OpenCL的调度框架,用于实现未来感知的动态热管理。
- 实验验证:在真实的嵌入式CPU-GPU平台(Odroid-XU4)上通过大量实验验证了所提出框架的有效性。
背景
现代数据密集型网络物理系统(CPSs)通常使用异构多处理器系统芯片(MPSoCs)进行实时感知、计算和执行。这些芯片由于其小尺寸,往往会在运行时产生高温,超过可接受的限度。传统的热管理技术,例如操作系统控制的频率缩放(DVFS),会导致服务质量(QoS)的显著下降和实时任务的时限违反。
具体背景和挑战
- 平台复杂性和异构性:现代嵌入式平台集成了多种计算单元(如高性能和低功耗CPU核心、GPU、神经处理单元等),这些单元在执行高频数据处理任务时会产生大量热量。
- 带宽需求增加