体系结构论文导读(三十):FSA: An Efficient Fault-tolerant Systolic Array-based DNN Accelerator Architecture

FSA: An Efficient Fault-tolerant Systolic Array-based DNN Accelerator Architecture
FSA:一种高效的容错脉动阵列 DNN 加速器架构


一、文章简析

在深度神经网络(DNN)加速器中,永久性故障尤其具有挑战性,因为它们可能导致推理错误和性能下降。为了解决这些问题,FSA架构提出了统一的重新计算模块(RCM),通过动态重新计算故障处理单元(PEs)应完成的计算,来保持DNN推理的准确性和性能。

注意:这篇文章关注点在于永久性故障

二、Intro

  • 永久性故障的影响

    • 在基于Systolic阵列的DNN加速器中,永久性故障会显著影响DNN推理的准确性。
  • 现有的解决方案

    • 软件解决方案:一些解决方案通过重新训练整个DNN模型来更新每一层的权重矩阵,另一些则避免使用有缺陷的PE进行关键计算。
      • 缺点:重新训练的模型和新的映射策略在添加约束条件后(如避免多个故障PE带来的不规则数据流)不太可能收敛。

这里文章里说重新训练,其实我个人有点不理解,有些PE不能用了,直接告诉操作系统 或者发送指令的时候不用这些PE不就好了吗?
一些可能的猜测是,在某些研究中,重新训练DNN模型是为了调整模型参数,使其能够适应由于硬件故障(如PEs故障&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

D了一天bug忘了编译

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值