题目描述
这是一个有趣的古典数学问题,著名意大利数学家Fibonacci曾提出一个问题:有一对小兔子,从出生后第3个月起每个月都生一对兔子。小兔子长到第3个月后每个月又生一对兔子。按此规律,假设没有兔子死亡,第一个月有一对刚出生的小兔子,问第n个月有多少对兔子?
输入
输入月数n(1<=n<=44)。
输出
输出第n个月有多少对兔子。
样例输入 Copy
3
样例输出 Copy
2
提示
本题是一个经典的递推入门题目: 用f(n)表示第n个月的兔子数目,则: f(n) = f(n-1) + 本月新生兔子数 而,本月新生兔子数 = f(n-2) (因为上上个月已存在的每只兔子,本月都会新生一只兔子) 所以,f(n) = f(n-1) + f(n-2) 这就是著名的fabinacci数列,后一项等于前两项的和: 1 1 2 3 5 8.....
解题思路:
当时看题没看提示,就没直接按照他给的公式来做,但我想的也差不多,当兔子三个月的时候就可以下崽,那说明兔子会经历三个阶段,一个月大,两个月大,成熟期,每过一个月,一个月大的变成两个月大的,两个月大的变成成熟的,成熟的下崽一个月大。然后就是每个月进行赋值,要注意的是如果不加一些中间变量用来临时储存的话,要先计算成熟的有多少,再计算两个月大的,再计算一个月大的,因为两个月大的在变成成熟的当月就会下崽,也就是题目中说的出生后第3个月起每个月都生一对兔子。
#include<bits/stdc++.h>
using namespace std;
int main(){
int mature=0;//成熟的兔子
int young1=1,young2=0;//一个月大的目前有一只,两个月大的木有。
int n;
cin>>n;
/*过去一个月后,
两个月大的变更成成熟的,
一个月大的变成两个月大的,
成熟的当月会生一对*/
for(int i=2;i<=n;i++)
{
mature += young2;
young2 = young1;
young1 = mature;
}
cout<<mature+young1+young2<<endl;
return 0;
}