首先我们讲一下什么是冒泡排序
冒泡排序是一种常用的排序算法,我们就一个例子来说明它:小明,小军,小红,李华,四个人军训站成一排。小明身高:180,小军:169,小红:175,李华:168。如果我们要从左自右,从低到高将他们排好队。使用冒泡排序的办法那就是这样的:
有观察可知小明一共比较了3次,小军2次,小红1次(不换位,只比较)。比较数是依次递减的。所以我们容易想到使用循环的方法。
冒泡排序的代码实现:
要排序的数字已经存储在了数组arr中,
for (int i = 0; i <arr.length-1; i++) {
for (int j = 0; j < arr.length-i-1; j++) {
if(arr[j]>=arr[j+1]){
k=arr[j];
arr[j]=arr[j+1];
arr[j+1]=k;
}
}
}
思考三个问题:1,为什么i那里的arr.length要减1?
2,为什么j那里的arr,length要减1和 i ?
3,如果不引入 k 这个外来量那么数组能不能实现前后互换?
时间复杂度:
嵌套了两个循环,所以我们可以直接认为它是O(n²)。
如果严谨一点的话,我们可以通过数列求和的方法确定时间复杂度。还是小明等人的例子,小明一共比较了3次,小军2次,小红1次,所以是小明一共比较了n-1次,小军n-2次,小红n-3次。是一个等差数列,由等差数列求和公式可得:
去掉低项式和系数之后就是O(n²)。
冒泡排序的优化:
刚刚所说的O(n²)是最大时间复杂度,而上面的代码的时间复杂度就是最大时间复杂度。
在实际生产中我们却不一定会遇到最大的时间复杂度,比如,180,168,169,175,这种的情况,其实在第一轮的排序中就已经完成了目标,时间复杂度为O(n),但是如果使用上面的代码,他的时间复杂度就会是O(n²)。
据此请各位同学思考它的优化思路。