
论文阅读
文章平均质量分 93
红盏‘’
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
REGAL: Representation Learning-based Graph Alignment
网络对齐,不同网络之间识别相应节点现有的表征学习方法:1.依赖于单个图中节点的邻近性,产生的嵌入在不相交的网络中不具可比性。2.通常涉及一些程序随机性(如随机漫步),这在嵌入学习中引入了差异,即使在一个网络中也是如此问题:学习节点表示,推断两个网络之间的节点映射第一次将无监督图对齐问题表述为学习和匹配节点表征的问题首个使用 SGNS(skip-gram with negative sampling)捕捉结构标识的节点嵌入的方法RECAL“REpresentation learning-based Graph原创 2024-01-05 10:21:14 · 1163 阅读 · 1 评论 -
论文阅读Trusted Source Alignment in Large Language Models
数据集比较有用原创 2023-11-16 15:25:37 · 183 阅读 · 1 评论