每次决策树分叉时,所有的特征都是随机排序的,随机种子就是random_state如果你的max_features小于你总特征数n_features,那么每个分叉必须采样,随机性很大。即使你的max_features = n_features,表现相同的分叉还是会选第一个,所以依然有随机性,sklearn的算法大多有random_state,如果需要复盘或是需要模型稳定不变必须设置。
每次决策树分叉时,所有的特征都是随机排序的,随机种子就是random_state如果你的max_features小于你总特征数n_features,那么每个分叉必须采样,随机性很大。即使你的max_features = n_features,表现相同的分叉还是会选第一个,所以依然有随机性,sklearn的算法大多有random_state,如果需要复盘或是需要模型稳定不变必须设置。