R8打卡——RNN实现阿尔兹海默症识别

   🍨 本文为🔗365天深度学习训练营中的学习记录博客

1.检查GPU

import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as sns

#设置GPU训练,也可以使用CPU
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2.查看数据

df = pd.read_csv("DATA/alzheimers_disease_data.csv")
# 删除第一列和最后一列
df = df.iloc[:, 1:-1]
df

​​

3.划分数据集

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

X = df.iloc[:,:-1]
y = df.iloc[:,-1]

# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X  = sc.fit_transform(X)

X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)

X_train, X_test, y_train, y_test = train_test_split(X, y, 
                                                    test_size = 0.1, 
                                                    random_state = 1)

X_train.shape, y_train.shape

from torch.utils.data import TensorDataset, DataLoader

train_dl = DataLoader(TensorDataset(X_train, y_train),
                      batch_size=64, 
                      shuffle=False)

test_dl  = DataLoader(TensorDataset(X_test, y_test),
                      batch_size=64, 
                      shuffle=False)

​​​

​​​​​

4.创建模型与编译训练

class model_rnn(nn.Module):
    def __init__(self):
        super(model_rnn, self).__init__()
        self.rnn0 = nn.RNN(input_size=32, hidden_size=200, 
                           num_layers=1, batch_first=True)

        self.fc0   = nn.Linear(200, 50)
        self.fc1   = nn.Linear(50, 2)
 
    def forward(self, x):
 
        out, hidden1 = self.rnn0(x) 
        out    = self.fc0(out) 
        out    = self.fc1(out) 
        return out   

model = model_rnn().to(device)
model

​​​​5.编译及训练模型

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset) # 训练集的大小
    num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
    for X, y in dataloader: # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        # 计算预测误差
        pred = model(X) # 网络输出
        loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        # 反向传播
        optimizer.zero_grad() # grad属性归零
        loss.backward() # 反向传播
        optimizer.step() # 每一步自动更新
        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss

def test (dataloader, model, loss_fn):
    size = len(dataloader.dataset) # 测试集的大小
    num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs = 30

train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    # 获取当前的学习率
    lr = opt.state_dict()['param_groups'][0]['lr']
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
    epoch_test_acc*100, epoch_test_loss, lr))
print("="*20, 'Done', "="*20)


6.结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率

from datetime import datetime
current_time = datetime.now() # 获取当前时间

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay

# 计算混淆矩阵
cm = confusion_matrix(y_test, pred)

plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")

# 修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Confusion Matrix", fontsize=12)
plt.xlabel("Predicted Label", fontsize=10)
plt.ylabel("True Label", fontsize=10)

# 显示图
plt.tight_layout()  # 调整布局防止重叠
plt.show()

​​​​​

7.模型预测

test_X = X_test[0].reshape(1, -1) # X_test[0]即我们的输入数据
 
pred = model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:",pred)
print("=="*20)
print("0:未患病")
print("1:已患病")

 总结:

  代码展示了如何使用PyTorch框架进行阿尔茨海默病数据集的分类任务。以下是该代码的主要步骤和功能总结:

  1. 检查GPU:首先,代码检查是否有可用的GPU,并设置相应的设备(cudacpu)。

  2. 查看数据:通过Pandas库加载数据集,并删除第一列和最后一列,这可能是为了去除非特征信息(如ID)或冗余信息。

  3. 划分数据集:对数据进行预处理,包括标准化以及将数据划分为训练集和测试集。接着,使用PyTorch的DataLoader创建数据加载器以便于后续模型训练时的数据批次处理。

  4. 创建模型与编译训练:定义了一个基于RNN的神经网络模型model_rnn,包含RNN层和两个全连接层。模型被移动到之前设定的设备(GPU或CPU)上。

  5. 编译及训练模型:定义了训练和测试函数,分别用于执行模型的训练过程和评估过程。采用交叉熵损失作为损失函数,Adam优化器作为优化算法。经过30个epoch的训练后,记录并打印出每个epoch的训练和测试准确率及损失值。

  6. 结果可视化:使用Matplotlib绘制训练和测试的准确率与损失的变化曲线图,直观地展示模型的学习效果。同时,还生成了混淆矩阵以进一步分析模型性能。

  7. 模型预测:最后,选取了一条测试数据进行模型预测,输出预测结果,并解释了预测结果的意义(是否患病)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值