数据可视化分析:基于R语言

本文详细介绍了R语言的基础知识,包括如何创建和操作数据,如向量、矩阵、数组、数据框和因子。接着,讨论了数据的读取、保存、随机数生成和抽样。在数据可视化部分,涵盖了R的基本绘图函数,如条形图、直方图、核密度图、箱线图等,以及更复杂的图形如马赛克图、气泡图和饼图。此外,还涉及了图形控制、颜色管理和页面布局。文章提供了丰富的代码示例,帮助读者理解和应用R进行数据处理和可视化。
摘要由CSDN通过智能技术生成

文章目录

第1章 R语言入门

1.1 创建R数据

1.1.1 向量 c()

1.1.2 矩阵 matrix()

1.1.3 数组 array()

dim1 <- c("男","女")
dim2 <- c("赞成","中立","反对")
dim3 <- c("东部","西部","南部","北部")
data <- round(runif(24,50,100))
array(data, c(2,3,4), dimnames=list(dim1,dim2,dim3))

1.1.4 数据框 data.frame()

函数解释
head()查看前几行
tail()查看后几行
str()查看数据结构
class()查看数据类型
rbind()按行合并
cbind()按列合并
sort()对向量进行排序
order()对数据框的数据进行排序

1.1.5 因子 factor()

类别变量(定性变量):分为无序类别变量和有序类别变量
数值变量(定量数据):分为离散变量和连续变量

1.1.6 列表 list()

1.2 数据的其他操作

1.2.1 数据读取和保存

函数含义
read.csv()读取外部数据
write.csv()保存数据

1.2.2 生成随机数

函数含义
set.seed()设定随机数种子
rnorm()正态分布
runif()均匀分布
rchisq()卡方分布

1.2.3 数据抽样 sample()

1.3 生成频数分布表

1.3.1 一维、二维列联表 table()

注:addmargins()为列联表添加边际和

1.3.2 多维列联表

ftable("数据", exclude, row.vars, col.vars)
library(vcd)
structable("公式", "数据", direction, subset)

1.3.3 数值数据类别化

cut("数据", breaks, include.lowest, right)
library(actuar)
grouped.data()

第2章 R绘图基础

2.1 R的基本绘图函数

2.1.1 高级绘图函数:产生一副独立的图形

  1. plot函数
属性含义
type设置绘图类型
xlimx轴的数值范围
ylimy轴的数值范围
log设置坐标轴是否要取对数
main图形主标题
sub图形副标题
xlabx轴标签
ylaby轴标签
axes是否绘制坐标轴
frame.plot是否绘制图形外框
data2_1 <- read.csv("F:/data/mydata/chap02/data2_1.csv")
attach(data2_1)
par(mfrow=c(2,2), mai=c(0.6,0.6,0.4,0.6),cex=0.7,cex.main=1)
plot(R,Python,main="(a)散点图")
plot(as.factor(性别),xlab="性别",main="(b)条形图")
plot(R~as.factor(性别),xlab="性别",main="(c)箱线图")
plot(as.factor(性别)~R,ylab="性别",main="(d)脊形图")
detach(data2_1)

在这里插入图片描述

数据类型图形
数值散点图
数值、数值散点图
因子条形图
一维列联表条形图
二维列联表马赛克图
数据框散点图矩阵

注:绘制模型的诊断图

par(mfrow=c(2,2), mai=c(0.6,0.6,0.2,0.1),cex=0.6)
model <- lm(R~Python,data=data2_1)
plot(model)
plot("数据1","数据2")

在这里插入图片描述

2.1.2 其他高级绘图函数

函数数据类型图形
barplot()数值向量、矩阵、列联表条形图
boxplot()数值向量、列表、数据框箱线图
curve()表达式曲线
dotchart()数值向量、矩阵点图
hist()数值向量直方图
matplot()数值向量、矩阵矩阵列图
mosaicplot()多维列联表马赛克图
pairs()矩阵、数据框散点图矩阵
pie()数值向量、列联表饼图
stars()矩阵、数据框星图
stem()数值向量茎叶图

2.1.3 低级绘图函数:在已有的图形上添加新元素

函数描述
abline()添加截距为a,斜率为b的直线
arrows()两点之间绘制线段,并添加箭头
segments()绘制线段
box()绘制图形边框
layout()布局图形页面
legend()添加图例
lines()添加直线
mtext()添加文本
text()添加文本
points()添加点
title()添加标题
xspline()绘制x样条曲线
par(mai=c(0.7,0.7,0.4,0.4),cex=0.8)
set.seed(100)
x <- rnorm(200)
y <- 3 + 7*x + 2 * rnorm(200)
d <- data.frame(x, y)
plot(x, y, xlab='自变量', ylab='因变量')
grid(col='grey60') # 添加网格线
axis(side=4,col.ticks='blue',lty=1) # 添加坐标轴
polygon(d[chull(d),], lty=6, lwd=1) # 添加多边形
points(mean(x),mean(y),pch=19,cex=4,col=2) # 添加均值点
# 添加均值水平、垂直线
abline(v=mean(x),h=mean(y),lty=2,col='gray30') 
abline(lm(y~x),lwd=2,col=2) # 添加回归直线
lines(lowess(y~x,f=1/6),col=4,lwd=2,lty=6) # 添加拟合曲线
segments(-1,-4,-1.5,10,lty=6,col="blue") # 添加线段
# 添加注释文本
text(-1.9,10,labels=expression('拟合的曲线'),adj=c(-0.1,0.02),col=4)
# 添加带箭头的线段 
arrows(0.5,-10,-1,-4,code=2,angle=25,length=0.06,col=2) 
rect(0.5,-10,1.5,-13,col='pink') # 添加矩形
mtext(expression(hat(y)==hat(a)+hat(b)*x),cex=1.5,side=1,line=-5,
		adj=0.7) # 添加注释表达式
legend('topleft',legend=c('拟合的直线','拟合的曲线'),lty=c(1,6),
		col=c(2,4),cex=0.8,fill=c('red','blue'),
		ncol=1,inset=0.02) # 添加图例
title('散点图及拟合直线和曲线 \n 并为图形添加新元素',cex.main=1.2,
		font.main=4) # 添加标题
box(col=4,lwd=2) # 添加边框

在这里插入图片描述

2.2 图形控制 par()

参数描述参数描述
adj设置文本的对齐方式bg图形的背景颜色
bty图周围边框的类型cex控制文字和绘图符号的大小
cex.axis坐标轴文字缩放倍数cex.lab坐标轴标签缩放倍数
cex.main主标题缩放倍数cex.sub副标题缩放倍数
col绘图颜色col.axis坐标轴文字颜色
col.lab坐标轴标签颜色col.main主标题颜色
col.sub副标题颜色family文字的字体族
fg绘图的前景颜色font文字的字体
font.axis坐标轴文字字体font.lab坐标轴标签字体
font.main主标题字体font.sub副标题字体
lty线条类型(1~6)lwd线条宽度
mai设置图形边距大小pch绘制点或符号的类型(0~25)
srt字符串的旋转角度

2.3 图形颜色

colors() # 查看颜色名称列表
library(RColorBrewer)
display.brewer.all(type='all') # 查看R的调色板

注:颜色集合函数

  • rainbow()
  • heat.colors()
  • terrain.colors()
  • topo.colors()
  • cm.colors()
  • gray.colors()

2.4 页面布局与图形组合

2.4.1 用par函数布局页面 mfrow mfcol

2.4.2 用layout函数布局页面:大小不同的区域

参数解释
mat由0或正整数组成的矩阵,用于描述绘制的图形
widths向量,分割页面的列宽度
heights向量,分割页面的行高度
layout.show()预览图形的布局
n = 100; set.seed(100); x <- rnorm(n); y <- rexp(n)
layout(matrix(c(1,2,3,4,5,5,6,7,8),3,3,byrow=T),widths=c(2:1),
		heights=c(1:1))
par(mai=c(0.3,0.3,0.2,0.1),cex.main=0.9)
barplot(runif(8,1,8),col=2:7,main='(a)条形图')
pie(1:12,col=rainbow(6),labels="",border=NA,main="(b)饼图")
qqnorm(y,col=1:7,pch=19,xlab="",ylab="",main="(c)Q-Q图")
plot(x,y,pch=19,col=c(1,2,4),xlab="",ylab="",main="(d)散点图")
plot(rnorm(25),rnorm(25),cex=(y+2),col=2:4,lwd=2,xlab="",
		ylab="",main="(e)气泡图")
plot(density(y),col=4,lwd=1,xlab="",ylab="",main="(f)核密度图")
polygon(density(y),col='gold',border='blue')
hist(rnorm(1000),col=3,xlab="",ylab="",main="(g)直方图")
boxplot(x,col=2,main="(h)箱线图")

在这里插入图片描述

2.4.3 同时打开多个绘图窗口 dev.new()

第3 章 类别数据可视化

3.1 条形图及其变种

3.1.1 简单的条形图

data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
library(sjPlot)
plot_frq(data=data3_1, 满意度, type="bar", show.n=T, show.prc=T)

在这里插入图片描述

3.1.2 并列条形图和堆叠条形图

data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
library(sjPlot)
p1 <- plot_xtab(data3_1$满意度, data3_1$性别, bar.pos="dodge",
                show.n=T, show.prc=T, show.summary=T, show.total=F,
                vjust="center")
p2 <- plot_xtab(data3_1$满意度, data3_1$性别, bar.pos="stack",
                show.n=T, show.prc=T, show.total=T, vjust="middle")
plot_grid(list(p1,p2), margin=c(0.3,0.3,0.3,0.3), tags=c("并列","堆叠"))

在这里插入图片描述

3.1.3 不等宽条形图和脊状图

library(ggiraphExtra)
library(ggplot2)
library(gridExtra)
data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
p1 <- ggSpine(data3_1, aes(x=满意度, fill=网购次数), position="dodge",
              palette="Reds", labelsize=2.5, ggtitle("不等宽并列"))
p2 <- ggSpine(data3_1, aes(x=满意度, fill=网购次数), position="stack",
              palette="Blues", labelsize=2.5, reverse = T,
              ggtitle("不等宽并列"))
grid.arrange(p1, p2, ncol=1)

在这里插入图片描述

data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
library(ggiraphExtra)
library(ggplot2)
ggSpine(data3_1, aes(x=满意度, fill=网购次数, facet=性别),
        palette="Reds", labelsize=3, reverse=T)

在这里插入图片描述

3.2 树状图

3.2.1 条形树状图

data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
library(plotrix)
cols = list(c("#FDD0A2","#FD8D3C"),c("#C6DBEF","#9ECAE1","#6BAED6"),
            c("#C7E9C0","#A1D99B","#74C746"))
sizetree(data3_1, col=cols, showval=T, showcount=T, stacklabels=T,
         border="black", base.cex=0.7)

在这里插入图片描述

3.2.2 矩形树状图

library(treemap)
data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
tab <- ftable(data3_1)
d <- as.data.frame(tab)
df <- data.frame(d[,-4], 频数=d$Freq)
treemap(df, index=c("性别","网购次数","满意度"),
        vSize="频数", type="index",fontsize.labels=9,
        position.legend="bottom", title="")

在这里插入图片描述

3.3 马赛克图及其变种

3.3.1 马赛克图

data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
par(mfrow=c(1,2), mai=c(0.3,0.3,0.2,0.1), cex.main=0.8, font.main=1)
mosaicplot(~性别+网购次数+满意度, data=data3_1, cex.axis=0.7,
           col=c("#E41A1C","#377EB8","#4DAF4A"), off=8, dir=c("v","h","v"),
           main="简单马赛克图")
mosaicplot(~性别+网购次数+满意度, data=data3_1, shade=T, cex.axis=0.7,
           off=8, dir=c("v","h","v"), main="扩展马赛克图")

在这里插入图片描述

3.3.2 马赛克图的变种

library(vcd)
data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
tab <- structable(data3_1)
p1 <- mosaic(tab, shade=T, labeling=labeling_values, return_grob=T,
             main="显示观测数")
p2 <- mosaic(tab, shade=T, labeling=labeling_values, value_type="expected",
             return_grob=T, main="显示期望频数")
mplot(p1, p2, cex=0.5, layout=c(1,2))

在这里插入图片描述

3.4 关联图和独立性检验P值图

library(vcd)
data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
tab <- structable(data3_1)
assoc(tab, shade=T, labeling=labeling_values)

在这里插入图片描述

data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
library(sjPlot)
sjp.chi2(data3_1, show.legend=T, legend.title="P值色标",
         title="Pearson卡方独立性检验")

在这里插入图片描述

3.5 气球图和热图

library(ggplot2)
library(ggpubr)
library(RColorBrewer)
data3_2 <- read.csv("F://data/mydata/chap03/data3_2.csv")
mat <- as.matrix(data3_2[,2:5])
rownames(mat) <- data3_2[,1]
palette <- rev(brewer.pal(11, "Spectral"))
ggballoonplot(mat, fill="value", rotate.x.text=F,
              scale_fill_gradientn(colors=palette))

在这里插入图片描述

data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
ggiraphExtra::ggHeatmap(data3_1, aes(x=满意度,y=网购次数,facet=性别),
                        addlabel=T, palette="Oranges")

在这里插入图片描述

library(ggiraphExtra)
library(ggplot2)
data3_2 <- read.csv("F://data/mydata/chap03/data3_2.csv")
d.long <- reshape2::melt(data3_2, id.vars="支出项目",variable.name="地区",
                         value.name="支出金额")
f <- factor(data3_2$支出项目, ordered=T, levels=data3_2$支出项目)
df <- data.frame(支出项目=f, d.long[,2:3])
ggHeatmap(df, aes(x=支出项目,y=地区,fill=支出金额), polar=T,
          addlabel=T, palette="Reds")

在这里插入图片描述

3.6 南丁格尔玫瑰图

library(RColorBrewer)
library(ggplot2)
data3_2 <- read.csv("F://data/mydata/chap03/data3_2.csv")
f <- factor(data3_2[,1], ordered=T, levels=data3_2[,1])
df <- data.frame(支出项目=f, data3_2[,2:5])
palette <- brewer.pal(8, "Set3")
ggplot(df, aes(x=支出项目, y=北京, fill=factor(北京))) + 
  geom_bar(width=1, stat="identity", colour="black", fill=palette) + 
  geom_text(aes(y=北京, label=北京), color="grey30") + 
  coord_polar(theta="x", start=0) + 
  theme(axis.title=element_text(size=8)) + 
  theme(axis.text.x=element_text(size=7, color="black"))

在这里插入图片描述

library(ggiraphExtra)
library(ggplot2)
data3_2 <- read.csv("F://data/mydata/chap03/data3_2.csv")
d.long <- reshape2::melt(data3_2, id.vars="支出项目", variable.name="地区",
                         value.name="支出金额")
f <- factor(data3_2[,1], ordered=T, levels=data3_2[,1])
df.rose <- data.frame(支出项目=f, d.long[,2:3])
ggRose(df.rose, aes(x=地区, fill=支出项目, y=支出金额),
       stat="identity", reverse=T)

在这里插入图片描述

ggRose(df.rose, aes(x=支出项目, fill=地区, y=支出金额),
       stat="identity", reverse=T)

在这里插入图片描述

3.7 金字塔图

data3_3 <- read.csv("F://data/mydata/chap03/data3_3.csv")
library(DescTools)
par(mfrow=c(1,2), mai=c(0.8,0.7,0.3,0.2), cex.main=0.7, font.main=1)
PlotPyramid(lx=data3_3$, rx=data3_3$, col=c("cornflowerblue","indianred"),
            lxlab="男", rxlab="女", ylab=data3_3[,1], ylab.x=0, cex.axis=0.7,
            cex.names=0.6, adj=0.5)
PlotPyramid(lx=data3_3$, rx=data3_3$, col=c("cornflowerblue","indianred"),
            lxlab="男", rxlab="女", ylab=data3_3[,1], ylab.x=-80000000, 
            gapwidth=0, space=0, cex.axis=0.7, cex.names=0.6, adj=0.5)

在这里插入图片描述

3.8 饼图及其变种

3.8.1 饼图和扇形图

library(ggiraphExtra)
library(ggplot2)
library(gridExtra)
data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
p1 <- ggPie(data=data3_1, aes(pies=网购次数), title="网购次数")
tab <- ftable(data3_1)
df <- as.data.frame(tab)
p2 <- ggPie(data=df, aes(pies=满意度, count=Freq), title="满意度")
grid.arrange(p1,p2,ncol=2)

在这里插入图片描述

library(plotrix)
data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
tab <- table(data3_1$满意度)
name <- names(tab)
percent <- prop.table(tab)*100
labs <- paste(name, percent, "%", seq="")
fan.plot(tab, labels=labs, max.span=0.9*pi, shrink=0.06, radius=1.2,
         label.radius=1.4, ticks=200, col=c("deepskyblue","lightgreen","pink"))

在这里插入图片描述

3.8.2 环状图和弧形图

library(ggiraphExtra)
library(ggplot2)
library(gridExtra)
data3_2 <- read.csv("F://data/mydata/chap03/data3_2.csv")
p1 <- ggDonut(data3_2, aes(donuts=支出项目, count=北京),
              labelposition=1, labelsize=2.5, xmin=2, xmax=4,
              title="北京")
p2 <- ggDonut(data3_2, aes(donuts=支出项目, count=上海),
              labelposition=1, labelsize=2.5, xmin=2, xmax=4,
              title="上海")
grid.arrange(p1,p2,ncol=2)

在这里插入图片描述

3.8.3 饼环图和旭日图

library(ggiraphExtra)
library(ggplot2)
library(gridExtra)
data3_1 <- read.csv("F://data/mydata/chap03/data3_1.csv")
p1 <- ggPieDonut(data3_1, aes(pies=网购次数, donuts=满意度),
                title="网购次数为饼图 满意度为环状图")
p2 <- ggPieDonut(data3_1, aes(pies=满意度, donuts=性别),
                title="网购次数为环状图 性别为饼图")
grid.arrange(p1,p2,ncol=2)

在这里插入图片描述

第4章 分布特征可视化

4.1 直方图

4.1.1 普通直方图

data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
library(sjPlot)
plot_frq(data4_1$AQI,type="histogram",show.mean=T,
         show.sd=T,geom.colors="green4")

在这里插入图片描述

4.1.2 叠加直方图和堆叠直方图

data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
labels <- c("优","良","轻度污染","中度污染","重度污染")
f <- factor(data4_1[,3],ordered=T,levels=labels)
df <- data.frame(质量等级=f,data4_1[,-3])
attach(df)
library(epade)
cols = c("green","yellow","orange","red","purple")
histogram.ade(PM2.5,group=质量等级,col=cols,wall=4,breaks=30,
              bar=T,alpha=0.4)
detach(df)

在这里插入图片描述

data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
labels <- c("优","良","轻度污染","中度污染","重度污染")
f <- factor(data4_1[,3],ordered=T,levels=labels)
df <- data.frame(质量等级=f,data4_1[,-3])
par(mfrow=c(1,2),mai=c(0.6,0.6,0.4,0.1),cex.main=0.9,font.main=1)
library(plotrix)
cols = c("green","yellow","orange","red","purple")
histStack(PM10~质量等级,data=df,xlab="PM10",ylab="频数",ylim=c(0,80),
      col=cols,legend.pos="topright",main="(a)PM10的堆叠直方图")
histStack(臭氧浓度~质量等级,data=df,xlab="臭氧浓度",ylab="频数",xlim=c(0,300),
      ylim=c(0,70),col=cols,legend.pos="topright",main="(b)臭氧浓度的堆叠直方图")

在这里插入图片描述

4.2 核密度图

4.2.1 核密度图和核密度比较图

data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
library(sjPlot)
plot_frq(data4_1$AQI,type="density",normal.curve=T,normal.curve.size=2,
         title="AQI的核密度图")

在这里插入图片描述

library(reshape2)
library(gridExtra)
library(ggplot2)
data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
d <- data4_1[,c(1,2,3,4,5,8,9)]
df <- melt(d,id.vars=c("日期","质量等级"),variable.name="指标",
           value.name="指标值")
mytheme<-theme(plot.title=element_text(size="9"), # 设置主标题字体大小
               axis.title=element_text(size=9),     # 设置坐标轴标签字体大小
               axis.text=element_text(size=8),        # 设置坐标轴刻度字体大小
               legend.position="right",                 # 设置图例的位置
               legend.text=element_text(size="7"))      # 设置图例字大小
p1 <- ggplot(df) + aes(x=指标值) +
  geom_density(aes(group=指标,color=指标,fill=指标),alpha=0) + 
  mytheme + 
  ggtitle("(a)核密度比较曲线(alpha=0)")
p2 <- ggplot(df) + aes(x=指标值) +
  geom_density(aes(group=指标,color=指标,fill=指标),alpha=0.3) + 
  mytheme + 
  ggtitle("(a)核密度比较曲线(alpha=0.3)")
grid.arrange(p1,p2,ncol=1)

在这里插入图片描述

4.2.2 分类核密度图

4.2.3 核密度山峦图

library(ggridges)
library(ggplot2)
data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
labels <- c("优","良","轻度污染","中度污染","重度污染")
f <- factor(data4_1[,3],ordered=T,levels=labels)
df <- data.frame(质量等级=f,data4_1[,-3])
ggplot(df,aes(x=AQI,y=质量等级,fill=质量等级,height=..density..)) + 
  geom_density_ridges(scale=4,stat="density") + 
  scale_fill_brewer(palette="Blues") + 
  theme_ridges(font_size=10) + 
  theme(legend.position="bottom") +
  labs(title="AQI的山峦图")

在这里插入图片描述

4.3 箱线图

data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
labels <- c("优","良","轻度污染","中度污染","重度污染")
f <- factor(data4_1[,3],ordered=T,levels=labels)
df <- data.frame(质量等级=f,data4_1[,-3])
library(gplots)
cols = c("green","yellow","orange","red","purple")
boxplot2(data=df,臭氧浓度~质量等级,top=T,shrink=1.2,textcolor=cols,
         col=cols,varwidth=T,xlab="质量等级",ylab="臭氧浓度")

在这里插入图片描述

4.4 小提琴图

data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
df <- data4_1[,4:9]
library(vioplot)
palette <- RColorBrewer::brewer.pal(6,"Set2")
names = c("PM2.5","PM10","二氧化硫","一氧化碳","二氧化氮","臭氧浓度")
vioplot(df,col=palette,names=names,xlab="指标",ylab="指标值")

在这里插入图片描述

4.5 茎叶图

4.6 点图

4.7 带状图

4.8 太阳花图

4.9 海盗图

4.10 分布概要图

# 分析一个变量
data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
attach(data4_1)
library(DescTools)
PlotFdist(AQI,mar=c(0,0,0,0),main="",
          args.hist=list(breaks=20,col=5),
          args.rug=T,
          args.dens=list(bw=6,col=4),
          args.ecdf=list(cex=1.2,pch=16,lwd=2),
          args.curve=list(expr="dnorm(x,mean=mean(AQI),sd=sd(AQI))",lty=6,col="grey60"),
          args.curve.ecdf=list(expr="pnorm(x,mean=mean(AQI),sd=sd(AQI))",lty=6,lwd=2,col="grey60"))
detach(data4_1)

在这里插入图片描述

# 分析多个变量
data4_1 <- read.csv("F:/data/mydata/chap04/data4_1.csv")
library(aplpack)
plotsummary(data4_1[,4:9],
            type=c("stripes","ecdf","density","boxplot"),
            y.size=4:1,
            design="chessboard",
            mycols="RB",main="")

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胆怯与勇敢

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值