tushare模块

获取历史交易数据

import tushare as ts

df = ts.get_hist_data('600848')

ts.get_hist_data('600848',ktype='W') #获取周k线数据

ts.get_hist_data('600848',ktype='M') #获取月k线数据

ts.get_hist_data('600848',ktype='5') #获取5分钟k线数据

ts.get_hist_data('600848',ktype='15') #获取15分钟k线数据

ts.get_hist_data('600848',ktype='30') #获取30分钟k线数据

ts.get_hist_data('600848',ktype='60') #获取60分钟k线数据

ts.get_hist_data('sh'#获取上证指数k线数据,其它参数与个股一致,下同

ts.get_hist_data('sz'#获取深圳成指k线数据 ts.get_hist_data('hs300')#获取沪深300指数k线数据

ts.get_hist_data('sz50'#获取上证50指数k线数据

ts.get_hist_data('zxb'#获取中小板指数k线数据

ts.get_hist_data('cyb'#获取创业板指数k线数据

 

获取历史分笔数据

df = ts.get_tick_data('000756','2015-03-27')

df.head(10)

获取实时分笔数据

df = ts.get_realtime_quotes('000581') 

 

print df[['code','name','price','bid','ask','volume','amount','time']]

返回值说明:

0:name,股票名字

1open,今日开盘价

2:pre_close,昨日收盘价

3:price,当前价格

4:high,今日最高价

5:low,今日最低价

6:bid,竞买价,即“买一”报价

7:ask,竞卖价,即“卖一”报价

8:volumn,成交量 maybe you need do volumn/100

9:amount,成交金额(元 CNY)

10:b1_v,委买一(笔数 bid volume)

11:b1_p,委买一(价格 bid price)

12:b2_v,“买二”

13:b2_p,“买二”

14:b3_v,“买三”

15:b3_p,“买三”

16:b4_v,“买四”

17:b4_p,“买四”

18:b5_v,“买五”

19:b5_p,“买五”

20:a1_v,委卖一(笔数 ask volume)

21:a1_p,委卖一(价格 ask price)

...

30:date,日期

31:time,时间

获取其他数据
股票分数数据
行业分类

ts.get_industry_classified()

概念分类,所有股票炒作概念,比如苹果、特斯拉等

ts.get_concept_classified()

地域分类

ts.get_area_classified()

中小板分类

ts.get_sme_classified()

创业板分类

ts.get_gem_classified()

风险警示板分类

ts.get_st_classified() 

沪深300成份股及权重

ts.get_hs300s()

上证50成份股

ts.get_sz50s()

基本面数据
沪深股票列表(基础数据,沪深所有股票情况)


ts.get_stock_basics()

业绩报告(主表)

#获取2014年第3季度的业绩报表数据

ts.get_report_data(2014,3)

盈利能力数据

#获取2014年第3季度的盈利能力数据

ts.get_profit_data(2014,3)

营运能力数据

#获取2014年第3季度的营运能力数据

ts.get_operation_data(2014,3)

成长能力数据

ts.get_growth_data(2014,3)

偿债能力数据

ts.get_debtpaying_data(2014,3)

现金流量数据

ts.get_cashflow_data(2014,3)

宏观经济数据

目前宏观经济数据主要包括以下方面:
金融信息数据
国民经济数据
价格指数数据
景气指数数据
对外经济贸易数据

END
数据存储
保存为csv格式

import tushare as ts

df = ts.get_hist_data('000875')#直接保存

df.to_csv('c:/day/000875.csv')#选择保存

df.to_csv('c:/day/000875.csv',columns=['open','high','low','close'])

保存为Excel格式

df = ts.get_hist_data('000875')#直接保存

df.to_excel('c:/day/000875.xlsx')#设定数据位置(从第3行,第6列开始插入数据) 

df.to_excel('c:/day/000875.xlsx', startrow=2,startcol=5)

保存为HDF5文件格式

df = ts.get_hist_data('000875')

df.to_hdf('c:/day/hdf.h5','000875') 

保存为JSON格式

df = ts.get_hist_data('000875')

df.to_json('c:/day/000875.json',orient='records')

MySQL数据库

pandas提供了将数据便捷存入关系型数据库的方法,在新版的pandas中,主要是已sqlalchemy方式与数据建立连接,支持MySQL、Postgresql、Oracle、MS SQLServer、SQLite等主流数据库。本例以MySQL数据库为代表,展示将获取到的股票数据存入数据库的方法,其他类型数据库请参考sqlalchemy官网文档的create_engine部分。

from sqlalchemy import create_engine 

import tushare as ts

df = ts.get_tick_data('600848',date='2014-12-22')

engine = create_engine('mysql://user:passwd@127.0.0.1/db_name?charset=utf8')

#存入数据库

df.to_sql('tick_data',engine)

#追加数据到现有表

#df.to_sql('tick_data',engine,if_exists='append')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值