C语言–质因数分解(非常简洁的代码实现)
这是百度上的概念:分解质因数只针对合数。(分解质因数也称分解素因数)求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。分解质因数的算式叫短除法,和除法的性质相似,还可以用来求多个数的公因式。
正文:
首先,质因数分解是针对非素数的,每一个非素数可以表示成它的部分因子乘积之和(可重复)例如 28 = 2 * 2 * 7
我们来看看怎么操作
例如:90的公因子为2,3,5,9,10,15 ·········
我们要用90从小到大除以它的公因子(注意:一个公因子可以被除多次)
1.我们先用最小的公因子除90: 90/2=45;(这一步分解出因子2)
2.因为45不能被2整除,所以就用下一个公因子3除90: 45/3=15;(这一步分解出因子3)
3.因为15能被当前公因子3整除,那么: 15/3=5;(这一步分解出因子3)
4.继续,因为5不能被3整除,那么:5/5=1(这一步分解除因子5) (这里最后一步的结束条件是得到的数 1 % 9(因数)!= 0)
这里按照我们的顺序把90分成了2 * 3 * 3 * 5
下面再来一个例子:
对28,我们进行分解
-
首先 ,28的因子从小到大为 2,4,7,14
-
28 / 2 =14;
-
14 / 2 = 7;
-
7 / 7 = 1; (这里最后一步的结束条件是得到的数 1 % 7(因数)!= 0)
那么 28 = 2 * 2 * 7;
由此推出下面的代码#include<stdio.h> int Isprime(int n) //函数功能--判断是否为素数 { for (int i = 2; i < n / 2; i++) if (n % i == 0) return 1; return 0; } void fun(int n) //函数功能--质因数分解 { int i = 0, j; int m = n; for (j = 2;j < m/2; j++) //从小到大寻找n的因数 while(n % j == 0) //当n%j(因数)== 0时,继续分解 { printf("%d*", j); n /= j; } } int main() { int n; int c; scanf("%d", &n); //输入要分解的数 c = Isprime(n); //判断是否为素数 if (c) fun(n); //如果不是素数则进行分解 else printf("it is a prime\n"); //如果是素数则不用分解 }
但是我们会发现这段代码运行出来是这样的:
打印的结果为 2 * 3 * 3 * 5*
尾巴后面多了个乘号
针对这个问题,我们在fun函数的while循环内稍作改动
下面是正解
#include<stdio.h>
int Isprime(int n)
{
for (int i = 2; i < n / 2; i++)
if (n % i == 0) return 1;
return 0;
}
void fun(int n)
{
int i = 0, j;
int m = n;
for (j = 2;j < m/2; j++)
while(n % j == 0)
{
printf("%d", j);
if (n / j > 2) printf("*");
n /= j;
}
}
int main()
{
int n;
int c;
scanf("%d", &n);
c = Isprime(n);
if (c) fun(n);
else printf("it is a prime\n");
}
这样就可以了。
第一次写这个,有不足的地方请吐槽,谢谢大家!