POJ1724

该博客主要介绍了如何利用Bellman-Ford算法解决带有权重限制的最短路径问题。通过建立图结构,用C++实现了一个SPFA(Shortest Path Faster Algorithm)版本的Bellman-Ford算法,能够处理负权边,并在不超过限制代价k的情况下找到从源节点到目标节点的最短路径。博客内容包括算法原理、代码实现以及样例输入输出的解析。
摘要由CSDN通过智能技术生成
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int n,k;
struct node
{
    int to;
    int next;
    int w;
    int l;
    node(){}
    node(int a,int b,int c,int d):to(a),next(b),w(c),l(d){}
}edge[10005];
typedef pair<int,int> P;
int head[105],vis[105][10005];
int tot;
int dist[105][10005];
void spfa()
{
    memset(vis,0,sizeof(vis));
    memset(dist,0x3f3f3f3f,sizeof(dist));
    dist[1][0] = 0; vis[1][0] = 1;
    queue<P>q; q.push(make_pair(1,0));
    while(!q.empty())
    {
        P fr = q.front(); q.pop(); vis[fr.first][fr.second] = 0;
        for(int i=head[fr.first];i!=-1;i=edge[i].next)
        {
            int v = edge[i].to;
            if(fr.second+edge[i].w<=k&&dist[v][fr.second+edge[i].w]>dist[fr.first][fr.second]+edge[i].l)
            {
                dist[v][fr.second+edge[i].w] = dist[fr.first][fr.second]+edge[i].l;
                if(!vis[v][fr.second+edge[i].w]) { q.push(make_pair(v,fr.second+edge[i].w)); vis[v][fr.second+edge[i].w] = 1;}
            }
        }
    }
    int ans = 0x3f3f3f3f;
    for(int i=0;i<=k;i++)
    ans = min(ans,dist[n][i]);
    if(ans!=0x3f3f3f3f) printf("%d\n",ans);
    else printf("-1\n");
}
int main()
{
    int m,u,v,w,l; tot = 0;
    scanf("%d%d%d",&k,&n,&m);
    memset(head,-1,sizeof(head));
    for(int i=0;i<m;i++)
    {
        scanf("%d%d%d%d",&u,&v,&l,&w);
        edge[tot] = node(v,head[u],w,l);
        head[u] = tot++;
    }
    spfa();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值