题目描述 如图,A 点有一个过河卒,需要走到目标 B 点。卒行走规则:可以向下、或者向右。同时在棋盘上的任一点有一个对方的马(如上图的C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点。例如上图 C 点上的马可以控制 9 个点(图中的P1,P2 … P8 和 C)。卒不能通过对方马的控制点。
棋盘用坐标表示,A 点(0,0)、B 点(n,m)(n,m 为不超过 20 的整数,并由键盘输入),同样马的位置坐标是需要给出的(约定: C<>A,同时C<>B)。现在要求你计算出卒从 A 点能够到达 B 点的路径的条数。
输入
键盘输入
B点的坐标(n,m)以及对方马的坐标(X,Y){不用盘错}
输出
屏幕输出
一个整数(路径的条数)。
样例输入 Copy
6 6 3 2
样例输出 Copy
17
样例输入 Copy
6 6 3 3
样例输出 Copy
6
#include<iostream>
using namespace std;
int map[25][25];
long long f[25][25];
int dis[8][2]= {{2,1},{1,2},{2,-1},{1,-2},{-2,1},{-1,2},{-2,-1},{-1,-2}};//表示马可能到达的8个位置
int main()
{
int n,m,x,y;
while(cin>>n>>m>>x>>y)
{
int i,j;
for(i=0;i<8;i++)
{
int a=x+dis[i][0];
int b=y+dis[i][1];
if(a>=0&&b>=0&&a<=n&&b<=m)
map[a][b]=1;//将马可以到达的地方标记为1
}
map[x][y]=1;
f[0][0]=1;
for(i=0;i<=n;i++)
for(j=0;j<=m;j++)
{
if(map[i][j]==1||i==0&&j==0)//代表起点或马可以到达的地方
continue;
else if(i==0)//第一行只能来自它的左边
f[i][j]=f[i][j-1];
else if(j==0)//第一列只能来自它的上边
f[i][j]=f[i-1][j];
else
f[i][j]=max(f[i][j],f[i-1][j]+f[i][j-1]);
}
printf("%lld\n",f[n][m]);
}
}