区间素数筛法

题目描述
筛法是一种简单检定素数的算法。据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274~194年)发明的,又称埃拉托斯特尼筛法(sieve of Eratosthenes)。
以上是百度百科的定义。不得不佩服古希腊人的智慧。今天希望你在古人智慧的基础上解决问题:给定正整数a和b,请问区间[a,b)内有多少个素数。

输入
每行有2个正整数a,b(a<b<=10^12)其中b-a<=1000000

输出
输出[a,b)素数的个数,每个输出占一行。

样例输入
23 37
样例输出
3

样例输入
22801763489 22801787297
样例输出
1000

#include<iostream>
using namespace std;
typedef long long ll;
const int N=10000007;
bool is_prime[N];
bool is_prime_small[N];
ll i,j,a,b;
ll ans;
void segment_sieve(ll a,ll b)
{//对区间[a,b)内的整数执行筛法。isprime[i-a]=true <=> i是素数
    for(i=0;(ll)i*i<b;i++) is_prime_small[i]=true;
    for(i=0;i<b-a;i++) is_prime[i]=true;
    for(i=2;(ll)i*i<b;i++)
    {
        if(is_prime_small[i])
        {
            for(j=2*i;(ll)j*j<b;j+=i) is_prime_small[j]=false;//筛[2,sqrt(b))
            for(j=max(2ll,(a+i-1)/i)*i;j<b;j+=i) is_prime[j-a] =false;//筛[a,b)
        }
    }
}
int main()
{
    while(~scanf("%lld %lld",&a,&b))
    {
        segment_sieve(a,b);
        ans=0;
        for(i=0;i<b-a;i++) if(is_prime[i]) ans++;
        if(a==1) ans--;
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wa_Automata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值