题目描述
筛法是一种简单检定素数的算法。据说是古希腊的埃拉托斯特尼(Eratosthenes,约公元前274~194年)发明的,又称埃拉托斯特尼筛法(sieve of Eratosthenes)。
以上是百度百科的定义。不得不佩服古希腊人的智慧。今天希望你在古人智慧的基础上解决问题:给定正整数a和b,请问区间[a,b)内有多少个素数。
输入
每行有2个正整数a,b(a<b<=10^12)其中b-a<=1000000
输出
输出[a,b)素数的个数,每个输出占一行。
样例输入
23 37
样例输出
3
样例输入
22801763489 22801787297
样例输出
1000
#include<iostream>
using namespace std;
typedef long long ll;
const int N=10000007;
bool is_prime[N];
bool is_prime_small[N];
ll i,j,a,b;
ll ans;
void segment_sieve(ll a,ll b)
{//对区间[a,b)内的整数执行筛法。isprime[i-a]=true <=> i是素数
for(i=0;(ll)i*i<b;i++) is_prime_small[i]=true;
for(i=0;i<b-a;i++) is_prime[i]=true;
for(i=2;(ll)i*i<b;i++)
{
if(is_prime_small[i])
{
for(j=2*i;(ll)j*j<b;j+=i) is_prime_small[j]=false;//筛[2,sqrt(b))
for(j=max(2ll,(a+i-1)/i)*i;j<b;j+=i) is_prime[j-a] =false;//筛[a,b)
}
}
}
int main()
{
while(~scanf("%lld %lld",&a,&b))
{
segment_sieve(a,b);
ans=0;
for(i=0;i<b-a;i++) if(is_prime[i]) ans++;
if(a==1) ans--;
printf("%lld\n",ans);
}
return 0;
}