POJ - 1201 Intervals(贪心+数据结构)

POJ - 1201 Intervals(贪心+数据结构)

考虑把所有线段按照右端点 b b b 从小到大排序,依次考虑每一条线段的要求:

  • 如果已经满足要求则跳过
  • 否则尽量选择靠后的数(因为之后的线段的右端点都在这条线段的右边,这样容错更高)

所以,我们可以建一个数组, f [ i ] f[i] f[i] 表示 i i i 数字是否选择(填 1 1 1 0 0 0),扫一遍 [ l , r ] [l,r] [l,r] 区间求和,然后从后往前贪心放数即可。
对于每条线段需要 O ( r − l + 1 ) O(r−l+1) O(rl+1)。所以最坏情况下 O ( n 2 ) O(n^{2}) O(n2)

考虑用数据结构优化。

  • 询问 [ l , r ] [l,r] [l,r] 区间的数字个数
  • 将值为 x x x 的位置 + 1 +1 +1
  • 从后往前,找到比当前位置靠前的下一个 0 0 0 的位置。

这就是 “区间求和,单调修改”,典型的树状数组。 O ( n l o g 2 50000 ) O(nlog_250000) O(nlog250000)

#include<cstdio>
#include<algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef pair<PII,int> PIII;
const int N = 50010;
PIII g[N];
int f[N],c[N];
inline bool cmp(const PIII &X,const PIII &Y)
{
	return X.first.second<Y.first.second;
}
inline int ask(int x)
{
	int res=0;
	for(;x>0;x-=(x&-x)) res+=c[x];
	return res; 
}
inline void add(int x,int y)
{
	for(;x<N;x+=(x&-x)) c[x]+=y;
}
int main()
{
	int n;scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		int a,b,c;scanf("%d%d%d",&a,&b,&c);
		g[i]=(PIII){(PII){a,b},c};
	}
	sort(g+1,g+n+1,cmp);
	int ans=0;
	for(int i=1;i<=n;i++)
	{
		int l=g[i].first.first,r=g[i].first.second,cnt=g[i].second;
		cnt-=ask(r)-ask(l-1);
		if(cnt>0)
		{
			for(int j=r;j>=l&&cnt;j--)
			if(!f[j])
			{
				f[j]=1;
				ans++;cnt--;
				add(j,1);
			}
		}
	}
	printf("%d\n",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
POJ - 3616是一个题目,题目描述如下: 给定一组区间,每个区间有一个权重,要求选择一些区间,使得这些区间的右端点都小于等于k,并且权重之和最大。请问最大的权重和是多少? 解决这个问题的思路是使用动态规划。首先,将区间按照左端点从小到大进行排序。然后,定义一个dp数组,dp[i]表示右端点小于等于i的所有区间所能得到的最大权重。 接下来,遍历每一个区间,对于每个区间i,将dp[i]初始化为区间i的权重。然后,再遍历i之前的每个区间j,如果区间j的右端点小于等于k,并且区间j的权重加上区间i的权重大于dp[i],则更新dp[i]为dp[j]加上区间i的权重。 最后,遍历整个dp数组,找到最大的权重和,即为所求的答案。 下面是具体的代码实现: ```cpp #include <cstdio> #include <cstring> #include <algorithm> using namespace std; struct interval{ int start, end, weight; }; interval intervals[10005]; int dp[10005]; int n, m, k; bool compare(interval a, interval b) { if (a.start == b.start) { return a.end < b.end; } else { return a.start < b.start; } } int main() { while(~scanf("%d %d %d", &n, &m, &k)) { memset(dp, 0, sizeof dp); for (int i = 0; i < m; i++) { scanf("%d %d %d", &intervals[i].start, &intervals[i].end, &intervals[i].weight); } sort(intervals, intervals + m, compare); for (int i = 0; i < m; i++) { dp[i] = intervals[i].weight; for (int j = 0; j < i; j++) { if (intervals[j].end <= k && dp[j] + intervals[i].weight > dp[i]) { dp[i] = dp[j] + intervals[i].weight; } } } int maxWeight = 0; for (int i = 0; i < m; i++) { maxWeight = max(maxWeight, dp[i]); } printf("%d\n", maxWeight); } } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wa_Automata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值