河南省第十四届ICPC大学生程序设计竞赛

文章提供了两个使用动态规划解决背包问题的实例。第一个是标准的分组背包问题,通过二维数组f来存储状态,以最大价值为目标进行决策。第二个问题引入了邮费概念,需要在考虑商品价值的同时减去邮费,通过前缀和转换成分组背包问题并求解最大利润。
摘要由CSDN通过智能技术生成

题目链接 https://ac.nowcoder.com/acm/contest/58860

分组背包问题

N N N 组物品和一个容量是 V V V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 v i j v_{ij} vij,价值是 w i j w_{ij} wij,其中 i i i 是组号, j j j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行有两个整数 N N N V V V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N N N 组数据:

  • 每组数据第一行有一个整数 S i S_i Si , 表示第 i 个物品组的物品数量;
  • 每组数据接下来又 S i S_i Si 行 , 每行有两个整数 v i j v_{ij} vij , w i , j w_{i,j} wi,j ,用空格隔开,分别表示第 i i i 个物品组的第 j j j 个物品的体积和价值;
输出格式

输出一个整数,表示最大价值。

#include<bits/stdc++.h>
using namespace std;

int f[101];
vector<int> v[101],w[101];

int main()
{
	int n,m;cin>>n>>m;
	for(int i=0;i<n;i++)
	{
	    int s;cin>>s;
	    for(int j=0;j<s;j++) 
	    {
	        int vv,ww;cin>>vv>>ww;
	        v[i].push_back(vv);
	        w[i].push_back(ww);
	    }
	}
	
	for(int i=0;i<n;i++)
	    for(int j=m;j>=0;j--)
	        for(int k=0;k<v[i].size();k++)
	            if(j>=v[i][k])
	                f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
	cout<<f[m]; 

    return 0;
}

M - 二手物品回收

  • 这道题是一个背包问题,严格上来说是一个分组背包问题,当前有 M M M 组,将当前每组取部分商品的最大利润是多少,但是第一次取商品时需要付一定的邮费。
  • 我们可以这样考虑,将每个商品的价值从大到小排序,然后将一个商品的价值减去邮费,这样取前几个就是最优的解。
  • 由于分组背包是每组选择一个物品,所以我们要考虑如何转化成分组背包问题。将排完序之后商店的商品做一个前缀和,对于第 k k k 个物品我们就可以理解为选取前 k k k 个商品的选法,所以这样就可以求出最优解。
#include<bits/stdc++.h>
using namespace std;

const int N = 1010;

vector<int> g[N];
int x[N],sum[N][N];
int dp[N];

int main()
{
	int n,m,k;cin>>n>>m>>k;
	for(int i=1;i<=m;i++) cin>>x[i];
	for(int i=1;i<=n;i++)
	{
		int a,b;cin>>a>>b;
		g[b].push_back(a);
	}
	for(int i=1;i<=m;i++)
	{
		if(g[i].empty()) continue;
		sort(g[i].begin(),g[i].end());
		reverse(g[i].begin(),g[i].end());
        g[i][0]-=x[i]; 
	}
	for(int i=1;i<=m;i++)
		for(int j=1;j<=g[i].size();j++)
			sum[i][j]+=sum[i][j-1]+g[i][j-1];
	memset(dp,-0x3f,sizeof dp);
	dp[0]=0;
	for(int i=1;i<=m;i++)
		for(int j=k;j>=0;j--)
			for(int c=0;c<=g[i].size();c++)
				if(j>=c)
					dp[j]=max(dp[j],dp[j-c]+sum[i][c]);
	cout<<dp[k];
	
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wa_Automata

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值