,试着用dfs写了下n皇后的问题,dfs与前面学习的bfs有相似的地方,但是dfs的代码更简单和方便。dfs是深度搜索,一直向下走走到最深处,走不下去了再回溯上一个。
相较于上一个bfs的代码只需要把bfs改为dfs
dfs代码为
void dfs(int dx,int dy)
{
room[dx][dy]='#';
num++;
for(int i=0;i<4;i++)
{
int newx=dir[i][0];
int newy=dir[i][1];
if(check(newx,newy)&&room[newx][newy]=='.')
{
dfs(newx.newy);
}
更简洁,如果遇到走不下去的情况,则会回到上一层的dfs用这种方法来实现回溯的效果。
而n皇后的问题是指,在n*n的方阵中,放置n个皇后是的每个皇后不同行,不同列,不同的对角线。
所以我们要先解决的是怎么判断是否,不同行,不同列,不同对角线
用col【i】==c 表示皇后位置,第i行第c列,因为每一行只有一个皇后
所以当我们不考虑行的问题时候可以用
if(col【i】==c||(abs(col[i]))
代码如下
#include <iostream>
#include <cstring>
#include <queue>
#include <cmath>
using namespace std;
int n,tot=0;
int col[12]={0};
bool check(int c ,int r )
{
for(int i=0;i<r;i++)
if(col[i]==c||(abs(col[i]-c)==abs(i-r)))
return false;
return true;
}
void dfs(int r)
{
if(r==n)
{
tot++;
return;
}
for(int c=0;c<n;c++)
{
if(check(c,r))
{
col[r]=c;
dfs(r+1);
}
}
}
int main()
{
int ans[12]={0};
for(n=0;n<10;n++)
{
memset(col,0,sizeof(col));
tot=0;
dfs(0);
ans[n]=tot;
}
while(cin>>n)
{
if(n==0)
return 0;
cout<<ans[n]<<endl;
}
return 0;
}
还有就是dp的题目没遇到什么很特别新的吧做的那几个基本上都是区间dp,关于区间dp感觉一般都是三重循环,初始点,区间长度,分开的那个点。然后初始化就要考虑一下特殊地方,比如分成零段的时候和求最大值和最小值时的初始化。
cf感觉做出来的也都是找规律,或者数学题目也没什么特别难的,关键还是在读题上面,还有那个数据范围也很重要。