代码随想录算法训练营Day 18|LeetCode513找树左下角的值、112 路径总和、113 路径总和II、106 从中序与后序遍历序列构造二叉树、105 从前序与中序遍历序列构造二叉树

LeetCode513 找树左下角的值

题目链接:找树左下角的值

思路

比较容易想到使用层序遍历,找到最后一层第一个节点即可。

代码

class Solution {
public:
    int findBottomLeftValue(TreeNode* root) {
        queue<TreeNode*> que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (i == 0) result = node->val; // 记录最后一行第一个元素
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

复杂度

时间复杂度:O(n)

空间复杂度:O(n)

Leetcode112 路径总和

题目链接:路径总和

思路

该题找到一个符合条件的路径即可,所以需要bool返回值,终止条件:让计数器 count 初始为目标和,然后每次减去遍历路径节点上的数值。 如果最后count == 0 ,同时到了叶子节点的话,说明找到了目标和。 如果遍历到了叶子节点,count 不为 0 ,就是没找到。

代码

class Solution {
public:
    bool hasPathSum(TreeNode* root, int sum) {
        if (!root)
            return false;
        if (!root->left && !root->right && sum == root->val) {
            return true;
        }
        return hasPathSum(root->left, sum - root->val) ||
               hasPathSum(root->right, sum - root->val);
    }
};

复杂度

时间复杂度:O(n)

空间复杂度:O(height)

Leetcode113 路径总和II

题目链接:路径总和 II

思路

本题需要遍历整个树,所以递归函数不需要返回值。

代码

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void traversal(TreeNode* cur, int count) {
        if (!cur->left && !cur->right &&
            count == 0) { // 遇到了叶⼦节点且找到了和为sum的路径
            result.push_back(path);
            return;
        }
        if (!cur->left && !cur->right)
            return; // 遇到叶⼦节点⽽没有找到合适的边,直接返回
        if (cur->left) { // 左 (空节点不遍历)
            path.push_back(cur->left->val);
            count -= cur->left->val;
            traversal(cur->left, count); // 递归
            count += cur->left->val;     // 回溯
            path.pop_back();             // 回溯
        }
        if (cur->right) { // 右 (空节点不遍历)
            path.push_back(cur->right->val);
            count -= cur->right->val;
            traversal(cur->right, count); // 递归
            count += cur->right->val;     // 回溯
            path.pop_back();              // 回溯
        }
        return;
    }

public:
    vector<vector<int>> pathSum(TreeNode* root, int sum) {
        result.clear();
        path.clear();
        if (root == NULL)
            return result;
        path.push_back(root->val); // 把根节点放进路径
        traversal(root, sum - root->val);
        return result;
    }
};

复杂度

时间复杂度:O(n^2)

空间复杂度:O(n)

Leetcode106 从中序与后序遍历序列构造二叉树

题目链接:从中序与后序遍历序列构造二叉树

思路

步骤如下:
  • 第⼀步:如果数组大小为零的话,说明是空节点了。
  • 第⼆步:如果不为空,那么取后序数组最后⼀个元素作为节点元素。
  • 第三步:找到后序数组最后⼀个元素在中序数组的位置,作为切割点
  • 第四步:切割中序数组,切成中序左数组和中序右数组 
  • 第五步:切割后序数组,切成后序左数组和后序右数组
  • 第六步:递归处理左区间和右区间

注意在切割时的边界问题,把握不变量,本题采用左开右闭区间。

代码

class Solution {
private:
    TreeNode* traversal(vector<int>& inorder, vector<int>& postorder) {
        if (postorder.size() == 0)
            return NULL;
        // 后序遍历数组最后⼀个元素,就是当前的中间节点
        int rootValue = postorder[postorder.size() - 1];
        TreeNode* root = new TreeNode(rootValue);
        // 叶⼦节点
        if (postorder.size() == 1)
            return root;
        // 找到中序遍历的切割点
        int delimiterIndex;
        for (delimiterIndex = 0; delimiterIndex < inorder.size();
             delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue)
                break;
        }
        // 切割中序数组
        // 左闭右开区间:[0, delimiterIndex)
        vector<int> leftInorder(inorder.begin(),
                                inorder.begin() + delimiterIndex);
        // [delimiterIndex + 1, end)
        vector<int> rightInorder(inorder.begin() + delimiterIndex + 1,
                                 inorder.end());
        // postorder 舍弃末尾元素
        postorder.resize(postorder.size() - 1);
        // 切割后序数组
        // 依然左闭右开,注意这⾥使⽤了左中序数组⼤⼩作为切割点
        // [0, leftInorder.size)
        vector<int> leftPostorder(postorder.begin(),
                                  postorder.begin() + leftInorder.size());
        // [leftInorder.size(), end)
        vector<int> rightPostorder(postorder.begin() + leftInorder.size(),
                                   postorder.end());
        root->left = traversal(leftInorder, leftPostorder);
        root->right = traversal(rightInorder, rightPostorder);
        return root;
    }

public:
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if (inorder.size() == 0 || postorder.size() == 0)
            return NULL;
        return traversal(inorder, postorder);
    }
};

复杂度

时间复杂度:O(n)

空间复杂度:O(n)

Leetcode105 从前序与中序遍历序列构造二叉树

题目链接:从前序与中序遍历序列构造二叉树

思路

同上题

代码

class Solution {
private:
    TreeNode* traversal(vector<int>& inorder, int inorderBegin, int inorderEnd,
                        vector<int>& preorder, int preorderBegin,
                        int preorderEnd) {
        if (preorderBegin == preorderEnd)
            return NULL;
        int rootValue = preorder[preorderBegin]; // 注意⽤preorderBegin 不要⽤0
        TreeNode* root = new TreeNode(rootValue);
        if (preorderEnd - preorderBegin == 1)
            return root;
        int delimiterIndex;
        for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd;
             delimiterIndex++) {
            if (inorder[delimiterIndex] == rootValue)
                break;
        }
        // 切割中序数组
        // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)
        int leftInorderBegin = inorderBegin;
        int leftInorderEnd = delimiterIndex;
        // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)
        int rightInorderBegin = delimiterIndex + 1;
        int rightInorderEnd = inorderEnd;
        // 切割前序数组
        // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)
        int leftPreorderBegin = preorderBegin + 1;
        int leftPreorderEnd =
            preorderBegin + 1 + delimiterIndex -
            inorderBegin; // 终⽌位置是起始位置加上中序左区间的⼤⼩size
        // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)
        int rightPreorderBegin =
            preorderBegin + 1 + (delimiterIndex - inorderBegin);
        int rightPreorderEnd = preorderEnd;
        root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,
                               preorder, leftPreorderBegin, leftPreorderEnd);
        root->right = traversal(inorder, rightInorderBegin, rightInorderEnd,
                                preorder, rightPreorderBegin, rightPreorderEnd);
        return root;
    }

public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if (inorder.size() == 0 || preorder.size() == 0)
            return NULL;
        // 坚持左闭右开的原则
        return traversal(inorder, 0, inorder.size(), preorder, 0,
                         preorder.size());
    }
};

复杂度

时间复杂度:O(n)

空间复杂度:O(n)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值