小蓝有一个 01 串 s = s1 s2 s3 · · · sn。
以后每个时刻,小蓝要对这个 01 串进行一次变换。每次变换的规则相同。
对于 01 串 s = s1 s2 s3 · · · sn,变换后的 01 串 s′ = s′1 s′2 s′3· · · s′n 为:
s′1 = s1;
s′i = si-1 ⊕ si。
其中 a ⊕ b 表示两个二进制的异或,当 a 和 b 相同时结果为 0,当 a 和 b不同时结果为 1。
请问,经过 t 次变换后的 01 串是什么?
解题思路:
暴力做法:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e3+10;
ll n,t;
bool dp[maxn];
bool temp[maxn];
int main()
{
scanf("%lld %lld",&n,&t);
getchar();
string str;cin>>str;
for(int i=0;i<str.size();i++)
{
if(str[i]=='0')dp[i]=0;
else dp[i]=1;
}
temp[0]=dp[0];
while(t--)
{
for(int i=1;i<str.size();i++)
{
temp[i]=dp[i]^dp[i-1];
}
for(int i=0;i<str.size();i++)
{
dp[i]=temp[i];
}
}
for(int i=0;i<str.size();i++)
{
printf("%d",dp[i]);
}
printf("\n");
return 0;
}
这样的话只能过部分数据
尝试优化:
对于一个01串他的变换次数是有一个周期的。这个周期是大于等于长度的最小的2的幂次。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e4+10;
ll n,t;
bool dp[maxn];
bool temp[maxn];
int main()
{
scanf("%lld %lld",&n,&t);
getchar();
string str;cin>>str;
for(int i=0;i<str.size();i++)
{
if(str[i]=='0')dp[i]=0;
else dp[i]=1;
}
temp[0]=dp[0];
long long len=1;
while(len<n)
{
len=len<<1;
//mod++;
}
t%=len;
while(t--)
{
for(int i=1;i<str.size();i++)
{
temp[i]=dp[i]^dp[i-1];
}
for(int i=0;i<str.size();i++)
{
dp[i]=temp[i];
}
}
for(int i=0;i<str.size();i++)
{
printf("%d",dp[i]);
}
printf("\n");
return 0;
}