【hello 数据结构】Chapter1-算法的时间复杂度和空间复杂度

瞳绣的博客

         每天进步一点点,希望的火苗不熄灭。


目录

一、前言 

二、时间复杂度

​1.时间复杂度:

 2.大O的渐进表示法:

三、空间复杂度

 ​1.空间复杂度:

四、常见复杂度对比

五、时间及空间复杂度简单示例


一、前言 

算法的效率:衡量一个算法的好坏,通常从时间和空间两个维度来衡量,即时间复杂度和空间复杂度。时间复杂度:主要衡量一个算法的运行快慢;空间复杂度:主要衡量一个算法运行所需要的额外空间。随着计算机的发展,据摩尔定理我们可以知道,每隔18个月计算机的存储空间翻一番,因此我们在这设计程序时,更加考虑时间的问题,好的算法使得程序在行时花费的时间相对较少。

二、时间复杂度

1.时间复杂度:

 算法中基本操作的执行次数。算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们现在大多人手一台计算机,每台计算机的性能(4核、8核处理器)大都是不同的,因此具体的运行时间也是不同的。

实际中:我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,这里我们使用大O的渐进表示法。

 2.大O的渐进表示法:

只保留最高阶项,并将其最高阶项系数置为1;

若本身为常数项,则为O(1);

 在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

三、空间复杂度

 1.空间复杂度:

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小(变量的个数不是字节数)的量度

空间复杂度计算规则:基本跟时间复杂度类似,也使用大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

四、常见复杂度对比

表达式时间/空间复杂度
5215645O(1)常数阶
2n+6O(n)线性阶
5n^2+3n+5O(n^2)平方阶
3logn+16O(logn)对数阶
6n+3nlog(2)n+16O(n*logn)n*logn阶
4n^3+3n^2+6O(n^3)立方阶
2n^2O(n^2)指数阶

五、时间及空间复杂度简单示例

1.时间:O(2n+M)~O(n);空间:O(1)

// 计算Func2的时间、空间复杂度
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
     ++count;
 }
 int M = 10;
 while (M--)
 {
     ++count;
 }
 printf("%d\n", count);
}

 2.时间:O(100)~O(1);空间:O(1)   ;注意:此处时间复杂度是一个常量阶

// 计算Func4的时间、空间复杂度
void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
     ++count;
 }
 printf("%d\n", count);
}

   3.时间:O((n-1)+(n-2)+...+1)=O(n(n-1)/2)~O(n^2)  ;空间:O(1)

// 计算BubbleSort的时间、空间复杂度
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
     int exchange = 0;
     for (size_t i = 1; i < end; ++i)
     {
         if (a[i-1] > a[i])
         {
             Swap(&a[i-1], &a[i]);
             exchange = 1;
         }
     }
 if (exchange == 0)
     break;
 }
}

  4.时间:O(logn)  ;空间:O(1)

// 计算BinarySearch的时间、空间复杂度
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 while (begin < end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid;
 else
 return mid;
 }
 return -1;
}

 5.时间:O(N)  ;空间:O(N)

// 计算阶乘递归Fac的时间、空间复杂度
long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N;
}

 6.时间:O((2^0)+(2^1)+...+(2^n))=O(2^n-1)~ O(2^n)  ;空间:O(N)

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

 注意:造成上述时间和空间复杂度不等的原因,主要是因为

时间是不能重复利用的,空间是可以重复利用的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞳绣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值