CV7-特征匹配1

局部特征

  • 全局特征会面临难以克服的困难

    • 遮挡,形变,环境
      在这里插入图片描述

特征检测

目标:

  • 稳定检测(如果两次检测出的特征点差别很大,无法进行匹配)
    在这里插入图片描述

  • 易于匹配
    在这里插入图片描述
    挑战

  • 对图像几何变换的稳定性

  • 对颜色,光照变化的稳定性

需求

  • 区域提取需要是可重复的和准确的
    • 不受平移,旋转,大小的影响
    • 不受仿射变换的影响
    • 对光照变化、噪音、模糊、量有很好的适应性
  • 局部性:特征是局部的,应该对遮挡和杂乱具有鲁棒性
  • 数量:需要足够数量的区域来覆盖该物体
  • 区别性:这些区域应该包含有趣的结构
  • 效率:接近实时

角点检测

角点的概念

  • 平坦区域:各方向都没有变化
  • 边:单方向有变化
  • 角点:各方向都有变化
    在这里插入图片描述

Harris角点检测

在角点处,沿任意方向运动都会引起像素颜色的明显变化

等价于:在角点附近,图像梯度具有至少两个主方向

  • 数学模型:若窗口发生小位移移动 u u u , v v v , 计算窗口内像素变化

    • w ( x , y ) w(x,y) w(x,y)是权重,可以设置窗口内所有位置的权重都为1,也可以利用高斯函数(角点中心的点的贡献更大)

    • I ( x + u , y + v ) I(x+u,y+v) I(x+u,y+v) 为位置 x , y x,y x,y 移动后位置的像素值

    • I ( x , y ) I(x,y) I(x,y)为位置 x , y x,y x,y 位置的像素值
      在这里插入图片描述

    • 将上式进行泰勒展开,可以得到如下形式
      在这里插入图片描述
      M M M 是一个 2 * 2的矩阵,元素是图像梯度

      • I x I_x Ix x x x 方向的梯度

      • I y I_y Iy y y y 方向的梯度
        在这里插入图片描述

      • 角点是与坐标轴对齐的,则每个点的梯度是与 x x x 轴平行或 与 y y y 轴平行的。

        如果两个 λ \lambda λ 都接近 0,则不是角点。角点位置的两个 λ \lambda λ 应该都比较大
        在这里插入图片描述

      • 角点不与坐标轴对齐 M M M 是对称的,可分解如下(对称矩阵的性质)
        在这里插入图片描述
        我们可以把M想象成一个椭圆,其轴线长度由特征值决定,方向由R决定。可以把R看成旋转因子,其不影响两个正交方向的变化分量。经对角化处理后,将两个正交方向的变化分量提取出来,就是 λ1 和 λ2(特征值)。

        为什么可以想象成椭圆【特征检测】Harris角点检测中的数学推导_hujingshuang-CSDN博客
        在这里插入图片描述
        λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2 都比较大,并且差不多大时,是角点
        在这里插入图片描述
        因为特征值计算起来比较麻烦,所以我们定义了响应函数 R = d e t ( M ) − α t r a c e ( M ) 2 = λ 1 λ 2 − α ( λ 1 + λ 2 ) 2 R = det(M) - \alpha trace(M)^2 = \lambda_1 \lambda_2- \alpha(\lambda_1+\lambda_2)^2 R=det(M)αtrace(M)2=λ1λ2α(λ1+λ2)2角点的 ∣ R ∣ |R| R大,平坦区域 ∣ R ∣ |R| R小,边缘的 ∣ R ∣ |R| R为负值
        在这里插入图片描述

光照,几何不变性?

具有旋转不变性和光照不变性,不具有尺度不变性

  • 旋转不变性

    对于下图,我们用椭圆表示 M。图像旋转后,椭圆旋转了,但是形状没变,因此响应函数 R R R 没变
    在这里插入图片描述

  • 不具有尺度不变性:尺度变化会将角点变成边缘

  • 加法变化不变性(整体光照):使用的是梯度

斑点检测

利用图像的 H e s s i a n Hessian Hessian矩阵。想法:在两个正交方向上寻找强梯度。全是二阶导

使用公式 d e t ( H ) det(H) det(H),认为 d e t ( H ) det(H) det(H) 大的是角点
在这里插入图片描述
结果:响应主要在角点处和纹理比较强的区域,但是我们想要检测的是斑点

二阶导关注的是图像像素急剧变化的区域,同样对噪声比较敏感
在这里插入图片描述
H e s s i o n Hession Hession对光照变化和几何变换的稳定性?

如何实现尺度不变

我们观察物体时,若物体离得近,则看起来又大又清晰。若离得远,则看起来又小又模糊。

进行特征检测时,计算机并不能判断图像中物体的尺度,因此我们使用金字塔来建立一系列不同尺度的图像集

图像的尺度空间是指图像的模糊程度,而非图像的大小。近距离看一个物体和远距离看一个物体,模糊程度是不一样的;从近到远,图像越来越模糊的过程,也是图像的尺度越来越大的过程。

高斯金字塔

高斯核是实现尺度变换的唯一变换核

通过降采样构建高斯金字塔。降采样前需要先对图像进行平滑以避免伪影(信号学知识)
在这里插入图片描述

  • 构建:每一层都通过对前一层进行平滑和下采样来得到

  • 为什么使用高斯?部分原因:

    • 高斯 * 高斯 = 另一个高斯

    • G ( σ 1 ) ∗ G ( σ 2 ) = G ( s q r t ( σ 12 + σ 22 ) ) G(\sigma_1) * G(\sigma_2) = G(sqrt(\sigma_{12} + \sigma_{22})) G(σ1)G(σ2)=G(sqrt(σ12+σ22))

  • 高斯滤波是低通滤波,当对图像模糊后,图像中的某些信息进行融合,这些信息中是有冗余信息的

    因此没有必要以完整的原始分辨率来存储平滑的图像。也就是说,我们可以降采样以减少存储空间

拉普拉斯金字塔

通过用大图减去升采样(插值 + 滤波)后的小图得到。实际上进行的是 DOG 的过程(高斯的差分)

  • 升采样后的图和原图大小一致,但更模糊,相当于对原图进行滤波得到的。因此两图相减是高斯的差分
    在这里插入图片描述

  • 拉普拉斯图像分解和重建

  • 拉普拉斯图像融合

实现尺度不变

在不同尺度同时进行检测与匹配

暴力

利用多个size的检测框对图像进行扫描

缺点:

  • 计算效率低下
  • 效率低下,但可用于匹配
  • 对大型数据库的检索来说是不可能的
  • 不利于识别
    在这里插入图片描述
自动尺寸选择

思想:针对检测区域设计一个尺度不变的函数(不管尺寸是怎样的,只要包含的内容一样,值就一样)

方法:

  • 取函数的局部最大值

    为什么我们这里要找最大值呢?

    原因:进行特征检测时,我们往往定义一个指标,并判断这个指标最大值对应的区域为特征点

  • 最大值对应的区域对图像尺寸来说是不变的

    图像尺寸变为 1/2 ,则最大响应值对应的区域大小也是 1/2
    在这里插入图片描述
    在这里插入图片描述
    归一化:区域大小变换到固定的尺寸

什么样的函数是有效的呢?

LOG:LOG的不同 σ \sigma σ 影响着其检测框的scale。 σ \sigma σ 越大,scale越大(因此可以使用不同 σ \sigma σ 的 LOG 来进行不同尺寸的特征检测)
在这里插入图片描述
我们记录 interest points:LOG尺度空间上的局部最大值对应的位置

实际使用时,我们常使用DOG来近似代替LOG,因为这样更方便计算
在这里插入图片描述

  • 流程
    • 在尺度空间上检测 DOG 的局部最大值
    • 非极大值抑制
    • 消除边缘响应(由于某些原因,在检测极值点时,边缘容易被检测出来)
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长命百岁️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值