第08章_聚合函数
讲师:尚硅谷
-
宋红康(江湖人称:康师傅)
官网:
http://www.atguigu.com
我们上一章讲到了
SQL
单行函数。实际上
SQL
函数还有一类,叫做聚合(或聚集、分组)函数,它是对一组数据进行汇总的函数,输入的是一组数据的集合,输出的是单个值。
1. 聚合函数介绍
- 什么是聚合函数
聚合函数作用于一组数据,并对一组数据返回一个值。
- 聚合函数类型
- AVG()
- SUM()
- MAX()
- MIN()
- COUNT()
- 聚合函数语法
- 聚合函数不能嵌套调用。比如不能出现类似“AVG(SUM(字段名称))”形式的调用。
1.1 AVG和SUM函数
可以对
数值型数据
使用
AVG
和
SUM
函数。
SELECT AVG(salary), MAX(salary),MIN(salary), SUM(salary)FROM employeesWHERE job_id LIKE '%REP%' ;
1.2 MIN和MAX函数
可以对
任意数据类型
的数据使用
MIN
和
MAX
函数。
SELECT MIN(hire_date), MAX(hire_date)FROM employees;
1.3 COUNT函数
- COUNT(*)返回表中记录总数,适用于任意数据类型。
SELECT COUNT (*)FROM employeesWHERE department_id = 50 ;
- COUNT(expr) 返回expr不为空的记录总数。
SELECT COUNT (commission_pct)FROM employeesWHERE department_id = 50 ;
- 问题:用count(*),count(1),count(列名)谁好呢?
其实,对于
MyISAM
引擎的表是没有区别的。这种引擎内部有一计数器在维护着行数。
Innodb
引擎的表用
count(*),count(1)
直接读行数,复杂度是
O(n)
,因为
innodb
真的要去数一遍。但好于具体的count(
列名
)
。
- 问题:能不能使用count(列名)替换count(*)?
不要使用
count(
列名
)
来替代
count(*)
,
count(*)
是
SQL92
定义的标准统计行数的语法,跟数
据库无关,跟
NULL
和非
NULL
无关。
说明:
count(*)
会统计值为
NULL
的行,而
count(
列名
)
不会统计此列为
NULL
值的行。
2. GROUP BY
2.1 基本使用
可以使用
GROUP BY
子句将表中的数据分成若干组
SELECT column, group_function(column)FROM table[ WHERE condition][ GROUP BY group_by_expression][ ORDER BY column];
明确: WHERE 一定放在 FROM 后面
在
SELECT
列表中所有未包含在组函数中的列都应该包含在
GROUP BY
子句中
SELECT department_id, AVG(salary)FROM employeesGROUP BY department_id ;
包含在 GROUP BY 子句中的列不必包含在SELECT 列表中
SELECT AVG(salary)FROM employeesGROUP BY department_id ;
2.2 使用多个列分组
SELECT department_id dept_id, job_id, SUM(salary)
FROM employeesGROUP BY department_id, job_id ;
2.3 GROUP BY中使用WITH ROLLUP
使用
WITH ROLLUP
关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和,即统计记录数量。
注意:当使用 ROLLUP 时,不能同时使用 ORDER BY 子句进行结果排序,即 ROLLUP 和 ORDER BY 是互相排斥的。
3. HAVING
3.1 基本使用
过滤分组:HAVING子句
1.
行已经被分组。
2.
使用了聚合函数。
3.
满足
HAVING
子句中条件的分组将被显示。
4. HAVING
不能单独使用,必须要跟
GROUP BY
一起使用。
SELECT department_id, MAX(salary)
FROM employeesGROUP BY department_idHAVING MAX(salary)> 10000 ;
- 非法使用聚合函数 : 不能在 WHERE 子句中使用聚合函数。如下:
SELECT department_id, AVG(salary)FROM employeesWHERE AVG(salary) > 8000GROUP BY department_id;
3.2 WHERE和HAVING的对比
区别
1
:
WHERE
可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;
HAVING
必须要与
GROUP BY
配合使用,可以把分组计算的函数和分组字段作为筛选条件。
这决定了,在需要对数据进行分组统计的时候,
HAVING
可以完成
WHERE
不能完成的任务。这是因为,在查询语法结构中,WHERE
在
GROUP BY
之前,所以无法对分组结果进行筛选。
HAVING
在
GROUP BY
之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE
无法完成的。另外,WHERE
排除的记录不再包括在分组中。
区别
2
:如果需要通过连接从关联表中获取需要的数据,
WHERE
是先筛选后连接,而
HAVING
是先连接
后筛选。
这一点,就决定了在关联查询中,
WHERE
比
HAVING
更高效。因为
WHERE
可以先筛选,用一
个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。
HAVING
则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。
小结如下:
优点
|
缺点
| |
WHERE
|
先筛选数据再关联,执行效率高
|
不能使用分组中的计算函数进行筛选
|
HAVING
|
可以使用分组中的计算函数
|
在最后的结果集中进行筛选,执行效率较低
|
开发中的选择:
WHERE
和
HAVING
也不是互相排斥的,我们可以在一个查询里面同时使用
WHERE
和
HAVING
。包含分组统计函数的条件用 HAVING
,普通条件用
WHERE
。这样,我们就既利用了
WHERE
条件的高效快速,又发挥了 HAVING
可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。
4. SELECT的执行过程
4.1 查询的结构
# 方式 1 :SELECT ...,....,...FROM ...,...,....WHERE 多表的连接条件AND 不包含组函数的过滤条件GROUP BY ...,...HAVING 包含组函数的过滤条件ORDER BY ... ASC /DESCLIMIT ...,...# 方式 2 :SELECT ...,....,...FROM ... JOIN ...ON 多表的连接条件JOIN ...ON ...WHERE 不包含组函数的过滤条件AND /OR 不包含组函数的过滤条件GROUP BY ...,...HAVING 包含组函数的过滤条件ORDER BY ... ASC /DESCLIMIT ...,...# 其中:# ( 1 ) from :从哪些表中筛选# ( 2 ) on :关联多表查询时,去除笛卡尔积# ( 3 ) where :从表中筛选的条件# ( 4 ) group by :分组依据# ( 5 ) having :在统计结果中再次筛选# ( 6 ) order by :排序# ( 7 ) limit :分页
4.2 SELECT执行顺序
你需要记住
SELECT
查询时的两个顺序:
1.
关键字的顺序是不能颠倒的:
SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...
2.SELECT
语句的执行顺序
(在
MySQL
和
Oracle
中,
SELECT
执行顺序基本相同):
FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT
比如你写了一个
SQL
语句,那么它的关键字顺序和执行顺序是下面这样的:
SELECT DISTINCT player_id, player_name, count (*) as num # 顺序 5FROM player JOIN team ON player .team_id = team .team_id # 顺序 1WHERE height > 1.80 # 顺序 2GROUP BY player .team_id # 顺序 3HAVING num > 2 # 顺序 4ORDER BY num DESC # 顺序 6LIMIT 2 # 顺序 7
在
SELECT
语句执行这些步骤的时候,每个步骤都会产生一个
虚拟表
,然后将这个虚拟表传入下一个步骤中作为输入。需要注意的是,这些步骤隐含在 SQL
的执行过程中,对于我们来说是不可见的。
4.3 SQL 的执行原理
SELECT
是先执行
FROM
这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:
1.
首先先通过
CROSS JOIN
求笛卡尔积,相当于得到虚拟表
vt
(virtual table)
1-1
;
2.
通过
ON
进行筛选,在虚拟表
vt1-1
的基础上进行筛选,得到虚拟表
vt1-2
;
3.
添加外部行。如果我们使用的是左连接、右链接或者全连接,就会涉及到外部行,也就是在虚拟
表
vt1-2
的基础上增加外部行,得到虚拟表
vt1-3
。
当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得到是我们的原始数据。
当我们拿到了查询数据表的原始数据,也就是最终的虚拟表
vt1
,就可以在此基础上再进行
WHERE
阶段
。在这个阶段中,会根据
vt1
表的结果进行筛选过滤,得到虚拟表
vt2
。
然后进入第三步和第四步,也就是
GROUP
和
HAVING
阶段
。在这个阶段中,实际上是在虚拟表
vt2
的基础上进行分组和分组过滤,得到中间的虚拟表
vt3
和
vt4
。
当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到
SELECT
和
DISTINCT 阶段
。
首先在
SELECT
阶段会提取想要的字段,然后在
DISTINCT
阶段过滤掉重复的行,分别得到中间的虚拟表
vt5-
1
和
vt5
-
2
。
当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是
ORDER BY
阶段
,得到虚拟表
vt6
。
最后在
vt6
的基础上,取出指定行的记录,也就是
LIMIT
阶段
,得到最终的结果,对应的是虚拟表
vt7
。
当然我们在写
SELECT
语句的时候,不一定存在所有的关键字,相应的阶段就会省略。
同时因为
SQL
是一门类似英语的结构化查询语言,所以我们在写
SELECT
语句的时候,还要注意相应的关键字顺序,
所谓底层运行的原理,就是我们刚才讲到的执行顺序。