Simulink实现神经网络在线训练(附Matlab代码)

该博客介绍了如何在Matlab Simulink中搭建一个8层神经网络,用于交通流量的拟合和预测。作者通过自定义模块实现了在线训练功能,能够观察每个参数的变化,并通过添加噪声防止过拟合。文章提供了具体的BP神经网络模型,包括激活函数Sigmoid,以及输入和输出的归一化处理。博主分享了训练和测试函数,并展示了训练过程的收敛性和拟合效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matlab自带的神经网络工具包已封装好不便于调试中间参数,且Simulink的工具包也只能用于样本离线的在线训练。本次搭建了一个简单的基于Simulink的8层神经网络在线训练,可以通过示波器模块观察到ANN运行中每个参数的变化。通过改装模块也可以实现样本更新的神经网络在线训练。

仿真源文件可私信,欢迎批评指正。

一.BP神经网络回顾

BP神经网络模型结构包含Input Layer,Hidden Layer, Output layer。基本结构如图所示。构成每一个神经层的节点称为神经元,图中x_i表示网络的 输入;w_{ij}b_i表示网络隐层的权值和偏置值;g表示激活函数,a_i表示隐层输出值;y_i是网络输出层。将各层网络参数向量化, 用矩阵形式表示为

Z=W_1X+b_1

评论 31
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值