自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 卡尔曼滤波

x为position y概率密度没有横杠的时候就是最优估计值,即修正值,也叫作后验估计值,有杠的是先验估计值,yk是观测值,即xk是传感器直接测量的一个值,由前面知道,Qk,Rk是噪声的方差,估计值方差即状态值方差,二维为矢量,表示不同的状态,二维协方差仅仅状态增多了。F,H取1即为一维,Q无风,基本无过程噪声,R观测噪声方差,比如3.8的投影仪与1000,价格不同,误差不同。xt-先验估计值,也是预测,Kt为卡尔曼增益,可理解为权重,更信任观测值,Kt大点。2.齐次性,即x增大k倍,y也增大k倍。

2024-11-21 14:54:51 525

原创 解码器-编码器

使用编码器-解码器架构的模型,编码器负责表示输入,解码器负责输出。编码器:将输入编程成中间表达形式(特征)解码器:将中间表示解码成输出。编码器:将文本表示成向量。解码器:向量表示成输出。State中间状态;

2024-11-13 16:02:12 275

原创 YOLOX

YOLOX 引入了一种新的匹配策略,称为 SimOTA(Simulated Online Top-k Assignment),它在训练过程中动态地为每个目标分配最优的预测框,而不是使用传统的硬匹配或软匹配方法。: 为了更好地评估模型性能,YOLOX 提出了 SimAP(Simulated Average Precision)作为新的性能指标,它模拟了在线测试时的匹配策略,以更准确地反映模型的实际性能。: YOLOX 采用了解耦的检测头设计,将类别预测和边界框预测分开处理,这有助于提高模型的检测精度。

2024-11-12 16:45:48 1269

原创 RNN&LSTM理论

循环神经网络(RNN,Recurrent Neural Network)是一种用于处理序列数据的神经网络架构。它的主要特点是能够利用序列中前面的信息来影响后面的计算。RNN:前面的数据用于后面的结果预测当中,即x1可以预测y1,除此之外,可能产生另外的信息比如激活函数。前部序列信息在传递到后部的同时,信息权重下降,导致重要信息丢失。一部每页只有一个单词的字典,页码就是单词对应的数值One-hot独热编码。前部序列的信息经处理后,作为输入信息传递到后部序列。与rnn关联起来,x的赋值。

2024-11-12 10:39:13 352

原创 YOLO系列之YOLOv5

下图是原来的Focus模块(和之前Swin Transformer中的Patch Merging类似),将每个2x2的相邻像素划分为一个patch,然后将每个patch中相同位置(同一颜色)像素给拼在一起就得到了4个feature map,然后在接上一个3x3大小的卷积层。在源码中,针对预测小目标的预测特征层(P3)采用的权重是4.0,针对预测中等目标的预测特征层(P4)采用的权重是1.0,针对预测大目标的预测特征层(P5)采用的权重是0.4,作者说这是针对COCO数据集设置的超参数。

2024-11-11 22:07:00 1409

原创 YOLO系列之YOLO v4

a左侧特征提取,右侧是FPN结构,高层往低层融合,在此基础上,又加了b,即低层往高层融合。再看左侧结构,输入的是如图大小的图片,接上ConvBNMish结构,再经过左侧卷积层1*1的ConvBNMish结构,右侧ResBlock结构。右侧v4结构中:CSP结构之前先进行一个下采样,之后通过两个1*1的卷积层,卷积核个数都是输入的一半,在经过1*1卷积层,ResBlock等。增强CNN学习的能力;原始范围为(0,1),经过缩放后,y对x变化更敏感了,则y更容易到达0,1,则解决了上述问题。

2024-11-11 15:28:35 921

原创 YOLO系列之YOLOv3

faster rcnn,SSD都是针对于anchor而言的,而yolo里是则对于anchor左上角点而言的,yolo结构里也提到,有三个预测特征层,每个预测特征层有不同的模板,下图假设是一个,则对每个anchor模板,都有四个边界框回归参数,分别对应tx,ty,tw,th。N*N是特征图的大小,常见的N13,26,52;l2损失,右上图l2损失是一样的,但是IOU不同,即损失不能很好的反映重合程度,故引入IOU Loss,计算公式如下,=-ln(IOU),还有一个IOU Loss=1-IOU。

2024-11-08 17:13:39 1174 2

原创 Websocket

【代码】Websocket。

2024-05-11 15:38:24 151 2

原创 Websocket应用

【代码】Websocket应用。

2024-05-10 20:43:14 146 1

原创 vue模板初始化

【代码】vue模板初始化。

2023-04-23 15:48:27 252

原创 axios +vue应用实例

input type="button" value="获取笑话" @click="getJoke">

2023-04-23 15:45:30 145

原创 axios +vue 实例

【代码】axios +vue 实例。

2023-04-23 15:39:08 128

原创 vue实现注册登录表单逻辑(正则表达式)

【代码】vue实现注册登录表单逻辑(正则表达式)

2023-04-23 15:23:20 469

原创 【vue小案例2】实现数据筛选

【代码】【vue小案例2】实现数据筛选。

2023-04-23 15:15:23 326

原创 vue期末模拟题

【代码】vue期末模拟题。

2023-04-23 10:32:49 529 1

原创 vue实现留言板功能

【代码】vue实现留言板功能。

2023-04-22 15:30:47 1634 3

原创 【vue小案例1】学员信息增删

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分

2023-04-21 21:03:38 830 1

原创 vue级联选择框(先选择省份而后根据省份选择市区例题为例)

【代码】vue级联选择框(先选择省份而后根据省份选择市区例题为例)

2023-04-21 20:53:39 395 2

vue案例&数据筛选 增删查改等

vue案例&数据筛选 增删查改等

2023-04-22

前端 + vue胡静啦啦啦境配置

前端 + vue胡静啦啦啦境配置

2023-04-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除