#include<iostream>
#include<math.h>
#include<iomanip>
#include<algorithm>
using namespace std;
int b[100002]={0},a[100002]={0};
//首先写一个实现求最大公约数的函数,这里用的是辗转相除法
int zhanzhuan(int a, int b)
{
if(a%b==0) return b;
else zhanzhuan(b,a%b);
}
int main()
{
int n,i,j,flag=0;
cin>>n;
for(i=0;i<n;i++)
cin>>a[i];
sort(a,a+n);//对已知数列中的元素进行排序
int tem=a[n-1]-a[0];//记录最大值与最小值的差,为后面计算铺垫
for(i=0;i<n-1;i++){
b[i]=a[i+1]-a[i];//记录相邻两元素的差值
if(b[i]==0){//判断是否为常数列
cout<<n;//如果是常数列,则直接输出
return 0;
}
}
//求所有相邻元素差的最大公约数
int max=zhanzhuan(b[0],b[1]);
for(i=2;i<n-1;i++){
max=zhanzhuan(max,b[i]);
}//求得最大公约数为max
cout<<tem/max+1;//这里利用公式an=a1+(n-1)d来确定n
return 0;
}
蓝桥杯题目:等差数列
最新推荐文章于 2024-11-12 17:21:19 发布