题意
给你一个按 非递减顺序 排列的整数数组 nums 。
请你判断是否能在将 nums 分割成 一个或多个子序列 的同时满足下述 两个 条件:
每个子序列都是一个 连续递增序列(即,每个整数 恰好 比前一个整数大1 )。
所有子序列的长度 至少 为 3 。
如果可以分割 nums 并满足上述条件,则返回 true ;否则,返回 false 。
题解和思考
题解:这题的要求很像打扑克牌的时候将牌凑成顺子。我们先使用一个哈希表cnt存储每个数字出现了多少次,再用一个哈希表chain_cnt存储以某个数字结尾的合法数字链的个数,这里的数字链指的是长度大于等于3的连续三个数字组成的链,如[3,4,5]。我们先遍历一遍数字,统计每个数字出现了多少次,再从前往后遍历一次,经过这一次循环后,哈希表cnt的含义变为每个数字还有多少个没被使用过。
首先判断这个数字是否已经透支使用完了,如果没有没使用完,说明当前我们需要使用这个数字来放在一个数字链当中。
遍历到数字x时,如果存在以x - 1结尾的合法数字链,那么我们直接将这个数字插入到这个数字链末尾,执行
chain_cnt[x] ++,chain_cnt[x - 1] --,cnt[x] --;
如果不存在以x - 1结尾的合法数字链,那么我们尝试用x作为一个新的数字链的开头,只有当cnt[x + 1] > 0 && cnt[x + 2] > 0的时候,才有可能让x作为一个新的合法数字链的开头,执行:
chain_cnt[x + 2] ++,cnt[x + 1] --,cnt[x + 2] --;
如果上面两个都不满足的话,那么说明遇到了非法数字,直接返回false。
class Solution {
public:
bool isPossible(vector<int>& nums) {
unordered_map<int, int> cnt, mp ;
for(int x : nums){
cnt[x] ++ ;
}
for(int x : nums){
if(cnt[x]){
if(mp[x - 1]){
cnt[x] -- ;
mp[x - 1] -- ;
mp[x] ++ ;
}
else {
if(cnt[x + 1] && cnt[x + 2]){
cnt[x] -- ;
cnt[x + 1] -- ;
cnt[x + 2] -- ;
mp[x + 2] ++ ;
}
else return false ;
}
}
}
return true ;
}
};
复杂度分析
时间复杂度:O(n),其中 n 是数组的长度。需要遍历数组两次,对于数组中的每个元素,更新哈希表的时间复杂度是常数。
空间复杂度:O(n),其中 n 是数组的长度。需要使用两个哈希表,每个哈希表的大小都不会超过 n。