论文-Individual Fairness for Graph Neural Networks: A Ranking based Approach

https://dl.acm.org/doi/abs/10.1145/3447548.3467266

注:仅作学习记录,欢迎指正

背景

群体公平:关注不同群体(由敏感属性划分)得到相似对待

个体公平:关注相似的人得到相似的对待(下图即Lipschitz mapping)

既往图神经网络的研究总是落在群体公平上。图数据是异构的,不同的数据模式(即图结构和节点属性)经常耦合在一起。因此,偏见和歧视可以以各种形式存在。在这方面,除了关于受保护属性的组公平性的概念之外,还希望深入研究图的原子组件(即节点),以确保图表示学习为相似的个体呈现相似的结果,从而实现个体公平。

解决问题

  1. 约束公式:由于输入空间和输出空间的距离度量差异,传统个体公平定义中利普希茨普常数通常很难指定。
  2. 距离校准:Lipschitz条件下的绝对距离比较无法校准不同实例之间的差异。(这里原文给了一个例子)
  3. 端到端的学习模式:GNN的节点嵌入是为了特定的下游学习任务定制的。如何将个体公平约束无缝地结合到学习过程中,而不危及其端到端的范式,是一个主要问题。

解决思路

REDRESS(Ranking  basEd inDividual faiRnESS的简称)

  1. 为了应对前两个挑战,从排名的角度细化了个人公平的定义:“针对每个实例𝑢𝑖 , 其他实例在输入空间和结果空间的两个排名列表(基于它们到𝑢𝑖的距离) 应该尽可能相似”。避免两个不同距离度量之间的精细距离比较,相对排名比较也可以自然地缓解未校准距离的问题。
  2. 为了应对第三个挑战,REDRESS中封装了两个优化模块,分别提高模型效用和个体公平性。为了适应端到端的训练过程,对两个优化模块进行了设计,以适应基于梯度的优化技术。

REDRESS

GNN backbone+Utility Maximization+Individual fairness optimization

1. GNN backbone model

l+1层的输出:h_{v}^{(l+1)}=\sigma (combine(h_{v}^{(l)},f(\{h_{u}^{(l)}\}) )),u\in N(v)

其中:combine表示二者结合,u是v的邻居节点,\sigma是激活函数(例:ReLU)

将最后一个GNN层的输出表示为矩阵Z∈R^{n\times c} , 则可以获得GNN的预测,即softmax(Z)∈R^{n\times c}用于节点分类和sigmoid(Z^{T}Z)∈R^{n\times n} 用于链接预测.

2. Utility Maximization

效用最大化可以通过最小化损失函数来实现。

损失函数:L_{utility} =-\sum_{(i,j)\in L}Y_{ij}ln\widehat{Y}_{ij}

其中:L是节点分类中训练节点的(节点,类)元组集,链接预测中训练边的(节点,节点)元组集。

对于前面的问题3,由于损失函数相对于模型参数是可微分的,基于梯度的优化技术可以直接应用于端到端训练。
3.Individual fairness optimization

一个直接解决方案

从每个节点的Oracle相似矩阵S_{G}和输出相似矩阵S_{\widehat{Y}}导出两个排名列表,然后定义一个损失函数来量化这两个排行列表之间的差异。之后,我们可以将所有节点上的损失函数组合在一起,并最大限度地减少总体损失,以获得可以促进个体公平性的更好的\widehat{Y}

但是,由于排序列表的排序操作将使总损失函数不再可微分(相对于GNN模型参数),在某种程度上,基于梯度的优化技术无法直接应用。因此,提出下面的解决方案

“比起m,i更相似于j”的可能性得分定义为:

在输出相似矩阵S_{\widehat{Y}}中:

在oracle相似矩阵S_{G}中:

采用一种基于概率的损失函数。节点对(u_{j},u_{m})以u_{i}为中心的交叉熵损失函数定义为:

L_{j,m}(i)= -P_{j,m}log\widehat{P}_{j,m} -(1-P_{j,m})log(1-\widehat{P}_{j,m})

于是所有节点对以u_{i}为中心的损失函数为

L_{fairness} =\sum_{(j,m)}L_{j,m}(i)

在有众多节点的网络中,这通常很难实现,下面考虑训练优化

定义Z_{@k} (\cdot ,\cdot )作为每个节点的S_{G}S_{\widehat{Y}}得出的top-k ranking list之间的相似性度量。

于是节点u_{i}的损失函数重新定义为

L_{fairness}(i) =\sum_{(j,m)}L_{j,m}(i)\left | \Delta Z_{@k} \right |_{j,m}

u_{j}u_{m}都不是来自S_{\widehat{Y}}的top-k节点,|\Delta Z_{@k} |_{j,m}为0;

否则,| \Delta Z_{@k} |_{j,m}=|Z_{@k}(list_{u_{i}},\widehat{list}_{u_{i}})-Z_{@k}(list_{u_{i}},\widehat{list}_{u_{i}}^{'})|,其中\widehat{list}_{u_{i}}^{'}交换了\widehat{list}_{u_{i}}u_{j}u_{m}的位置。

为了进一步优化,可以直接限制u_{j}u_{m}都是来自S_{\widehat{Y}}的top-k节点。

损失函数:L_{total}=L_{utility}+\gamma L_{fairness}

实验

在节点分类和链接预测任务下分别进行了几个实验,采用了各种GNN backbone。

探求了以下三个问题:

  1. 在效用和个人公平方向的表现如何?
    优于目前的先进方案
  2. \gamma的选择有什么影响?
    \gamma较小时,和NDCG@10在效用和公平性表现相当;
    \gamma适中时,在不影响效用的情况下改善了个体公平性;
    \gamma过大时,效用受到影响,个体公平性的效果也随着\gamma的增大而更差。
  3. k的选择有什么影响?
    k增大时,个体公平性效果越好,效用几乎不受影响。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值