关于素数问题和二分查找的理解

本文探讨了素数问题,介绍了两种算法:最简单的全范围判断法和优化的开根号法,并提供了相关函数实现。此外,还讲解了二分查找算法,通过新的思路降低了算法复杂度。
摘要由CSDN通过智能技术生成

1:素数问题(2023年)

素数是指除了 1 和它本身以外,不能被任何整数整除的数

一个数的因子最大到n/2

常见算法:

(一)最简单方法(从2到n-1每个数均整除判断)时间复杂度O(n)

(二)开根号法:从2到\sqrt{}n均整除判断,时间复杂度O(\sqrt{}n)(原因:素数是因子为1和本身, 如果数c不是素数,则还有其他因子,其中的因子,假如为a,b.其中必有一个大于sqrt(c) ,一个小于sqrt(c) 。所以m必有一个小于或等于其平方根的因数,那么验证素数时就只需要验证到其平方根就可以了。即一个合数一定含有小于它平方根的质因子。)

例:

(1)设计一个函数int  is_prime(int x)用于判断一个整数是否是素数,是素数返回1,否则返回0。

(2) 在 主函数中调用isprime函数,输出100-999之间的个位数为7的所有的素数之和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值