首先大家应该要知道什么是算法效率。
算法效率是指算法执行的时间,算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量。
然后算法效率分为两种:时间效率与空间效率。其时间效率为时间复杂度,空间效率为空间复杂度。
时间复杂度:算法的时间复杂度是一个函数,它定性描述该算法的运行时间。一般我们把算法中的基本操作的执行次数,为算法的时间复杂度。
时间复杂度常用大O符号表述。
推导方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
下面举几个例子。
n=100,m=100;
for(i=0;i<n;i++)
{
for(j<0;j<m;j++)
{
scanf("%d",&a[i][j]);
}
}
这里如果使用大O符号来表示其空间复杂度,不是O(m*n),而是O(1),因为这里n,m已经是常数了!
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
}
}
这段代码执行的次数为n*n,而且n为未知数,因此这里的空间复杂度为0(n^2)
空间复杂度:是指运行完一个程序所需要的内存大小。
空间复杂度与时间复杂度计算方法类似也是使用大O符号进行表示。
但是与时间复杂度不同,空间复杂度不是计算空间,而是计算大概定义变量个数。
下面举个例子。
for()i=0;i<n/2;i++)
{
t=a[i];a[i]=a[n-i-1];a[n-i-1]=t;
}
这里我们仅仅定义了一个变量t,因此其空间复杂度为O(1)
总结:时间复杂度与空间复杂度类似,需要多多的计算几次,这里仅仅列出几个简单的例子。
个人心得:需要付出更多的时间来敲代码!