前言:命题逻辑的局限性
一、谓词的概念与表示
1、谓词的概念
在命题逻辑中,命题是能够判断真假的陈述句,从语法上分析,一个陈述句由主语和谓语两部分组成。
◆ 主语是谓语陈述的对象(称为客体或个体),指出谓语说的是“谁”或者“什么”;
◆ 谓语是用来陈述主语的,说明主语“怎么样”或者“是什么”(称为谓词)。
2、谓词的表示
定义1:个体词是指所研究对象中可以独立存在的具体的或抽象的个体。表示具体的、特指的个体词,称为个体常元,常用小写字母a,b, c,… 来表示。表示抽象的、泛指的或在一定范围内变化的个体词,称为个体变元,常用小写字母x,y,z,… 来表示。
定义2:用来刻画一个个体的性质或多个个体之间关系的词,称为谓词,谓词也有常元和变元之分。表示具体性质或关系的谓词称为谓词常元,表示抽象的、泛指的性质或关系的谓词称为谓词变元。无论是谓词常元还是谓词变元都用大写英文字母P,Q,R,… 或带下标的英文字母来表示。
3、命题的表示方法
❖ 用谓词表达命题,必须包括个体和谓词字母两个部分。
❖ 单独一个谓词不是完整的命题,必须在谓词字母后填以客体才能表示命题。谓词字母后填以客体所得的式子称为谓词填式。
❖ 对于给定的命题,当用表示其客体的小写字母和表示其谓词的大写字母来表示时,规定把小写字母写在大写字母右侧的圆括号( )内。
❖ A(b), G(t) 称作一元谓词;
❖ B(a,b)称作二元谓词。
❖ 推广到n元谓词:A是谓词,a1,a2,…an是客体的名称,则A(a1,a2,…an)是n元谓词。
❖ 一元谓词表达了客体的性质。
❖ 多元谓词表达了客体之间的关系,在多元谓词中客体的次序非常重要,不能随意更换。
二、命题函数与量词
1、命题函数
简单命题函数:由一个谓词、一些客体变元组成的表达式称为简单命题函数。
复合命题函数:由一个或n个简单命题函数以及逻辑联结词组合而成的表达式称复合命题函数。
逻辑联结词┐、∧、∨、→、 的意义与命题演算中的解释完全类似。
2、个体域
在命题函数中,个体变元的论述范围称作个体域(或称论域