初识单调栈和哨兵。
操纵下标可以获得高度和宽度,所以栈里面存的是下标
没有哨兵的情况下
- 将0下标入栈
- 在下标i入栈之前,比较st.top()的高度a和i的高度b。(1).如果高度a小于等于高度b,就将其入栈。(2)while(如果高度a大于高度b,则高度a的矩形可以确立,先弹出,然后宽度即为i - st.top() - 1)。((1)(2)两步可以看出来,st里面的下标对应的高度肯定是非单调递减的,也就是说栈中的每个高度都具有左边界(最左边的下标除外,但是可以通过哨兵为其设一个左边界)。此时将要入栈的下标对应的高度若比st.top()对应的高度小,也就是说,又为栈中的某些矩形提供了右边界。左右边界已确定,就可以计算宽度)
- 全部下标入栈之后,栈不为空。此时需要弹出元素,可以假设有一个右边界heights.size(),来计算面积。若仅剩下一个元素,此时左右边界都没有(也可以看作下标-1和heights.size()是左右边界),宽度就是heights数组的长度
- 关于两个相邻矩阵高度相同的情况,其实不需要做特殊处理。现在假设heights[0] = 1, heights[1] = 5, heights[2] = 5, heights[3] = 2;当下标为3时,因为其高度比5小,所以高度为5的矩形可以确定。计算其宽度为1,面积为5。此时while循环并未结束,继续处理,对于下标为1的高度5,其确立的矩形宽度为2,符合我们的预期。
有哨兵
个人理解,哨兵的本质就是添加一个左右边界。不加哨兵的做法,其实就是默认-1处和heights.size()是边界嘛。但是处理起来很麻烦,弹栈操作使代码显得十分臃肿。干脆改变heights数组,将原数组右移,左右分别添加两个高度为0得高度,一次循环即可搞定。
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
if(heights.size() == 0) return 0;
if(heights.size() == 1) return heights[0];
stack<int> st;
int maxS = 0;
heights.insert(heights.begin(), 0);
heights.push_back(0);
st.push(0);
for (int i = 1; i < heights.size(); i ++) {
while (heights[st.top()] > heights[i]) {
int hei = heights[st.top()]; st.pop();
int wid = i - st.top() - 1;
maxS = max(maxS, wid * hei);
}
st.push(i);
}
return maxS;
}
};