二分法总结(超级详细)附带图解

1. 二分法

二分查找是一个时间效率极高的算法,尤其是面对大量的数据时,其查找效率是极高,时间复杂度是log(n)。
主要思想就是不断的对半折叠,每次查找都能除去一半的数据量,直到最后将所有不符合条件的结果都去除,只剩下一个符合条件的结果。

2. 时间复杂度:

  二分法的时间复杂度是log(n),但log(n)为什么效率这么高呢?接下来我举个例子来描述一下:

  我们都听说过指数爆炸,何为指数爆炸,就是在指数不断增加的情况下,其数值的上升速度不断增加,上升速率可以迅速的接近增无穷。

如图:
在这里插入图片描述

同样也有这样一个理论去描述指数爆炸的威力:那就是一个乒乓球每秒钟翻一倍,五分钟可以填满整个宇宙。

而我们二分法就相当于上升的逆转,一个每秒钟翻一倍的乒乓球,五分钟就可以堆满整个宇宙,反之,堆满整个宇宙的乒乓球,每秒钟减少一半,五分钟后就只剩一个。

3. 二分法的套路

使用二分法,我们要按照一下两个步骤:

  1. 我们要确定一个区间[L,R]
  2. 我们要找到一个性质,并且该性质满足一下两点:
    ①满足二段性
    ②答案是二段性的分界点。

这里可能很多人有疑问了,这性质到底是什么性质,其实就是根据题目找出的判断条件。

例如:

我们要在一组升序的数组找一个数的下标,那我们肯定是先拿中间的与他进行比较,更具比较大小这个判断,其实就相当于是这个性质,且这个性质满足二段性,将大于和小于我们要查找的值分为两段,而我们的查找结果就是分界点

3.1 整数的二分

情况一:
当ans属于左边界时,如图进行划分:
在这里插入图片描述
这种情况有两个区间[L,mid1]和[mid1 + 1,R],我们要根据条件将某一半区间舍去,而为什么要这样划分呢?
根据图分析:

  1. 当mid属于红色区域时,也就是mid1,我们发现,mid1是有可能等于ans的,为了避免我们将ans排除在区间外,我们令L = mid,从而在除去左边不需要的数据同时,好保证了ans任在区间内。
  2. 当mid属于蓝色区域,及mid2时,mid2是不会等于ans的,所以我们可以将包括mid2的右边区间全部去除,及令R = mid - 1。

模板1如下:

while(l < r){
	int mid = l + r + 1 >> 2;//这里为什么要+1呢,请继续往下看
	if(在红色区域内)l = mid;
	else r = mid - 1;
}

我们取个临界情况,及当L = R - 1时,
我们知道,在上面这种情况下,是进行L = mid进行区间调整的,假设mid = (L + R) / 2,那么L = (L + R) / 2 = (2 * R - 1) / 2 = L(很明显的奇数除以二,会进行向下取整),所以这样会造成死循环。

情况二:
在这里插入图片描述
当ans属于右边界时:
这种情况划分为[L,mid - 1]和[mid,R],因为当mid在蓝色区域(mid2)时,mid2可能等于ans。同样的分析方式,可以自己分析一下(加深理解)

模板2如下:

while(l < r){
	int mid = l + r >> 1;//左移1有除2的效果,+的优先级大于>>
	if(mid 属于蓝色区域) r = mid;
	else l = mid + 1;
}

3.2 实数的划分

实数的划分相对与整数要简单,没有这么多种情况,因为实数除以2的结果不会有什么向上或向下取整的情况,一定会有个原原本本的结果,就L = mid,R = mid这种区间转变的方式,而循环条件通常是L - R > 1e-6,1e的负次方根据题目进行调整。

模板:

while(l - r > 1e-6){
	if(arr[mid] > ans)l = mid;
	else r = mid;
}

四. 相关习题

实践才是检验整理的唯一标准,上面讲了这么多理论,刚开始接触的人可能还是会有点蒙,接下来我们看几个例子来真真切切的感受一下:

4.1 数的范围

题目链接: 789. 数的范围

这道题是一道模板题,并且我觉得很好,因为他把整数二分的两种模板都用上了。

题目要求:

题目要求是,给我们长度为n的升序数组和一个数q,q表示查询的次数,每次查询给一个值x,要求找出x的区间,比如1,2,2,3,4,4,4,如果x的4,那么我们的输出结果就是4 6,因为含有4的下标区间在[4,6]内。

思路分析:

  1. 首先我们要获得判断确定区间,很明显区间是[0, n - 1]。
  2. 寻找性质。
    我们先考虑如何寻找x的左边界,很明显处在左边界的值一定是>=x,
    如图:

在这里插入图片描述
同时也刚好将区间分为两端,符合二段性,且是分界点。
我们继续分析:
因为ansL在蓝色范围内,所以我们应该进行如下转变方式:L = mid + 1,R = mid。

左边界代码如下:

while(l < r){
	int mid = l + r >> 1;
	if(a[mid] >= x)r = mid;
	else l = mid + 1;
}
//找出之后我们还要判断,a[r]是否等于x,如果不等于则说明没有x,输出-1 -1
if(a[r] != x)cout << "-1 -1" << endl;
else{//否则我们寻找r
	;
}

现在我们分析右边界
左边界是一定大于等于x,那么我们的右边界显然是判断小于等于x。
在这里插入图片描述
这时我们进行如下调换,L = mid,R = mid - 1,且mid = L + R + 1 >> 1。

右边界代码如下:

while(l < r){
	int mid = l + r + 1 >> 1;
	if(a[mid] <= x)l = mid;
	else r = mid - 1;
}

完整代码:

#include <cstdio>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1e5 + 10;

int n, q;
int a[N];

int main(){
    cin >> n >> q;
    for(int i = 0; i < n; i++)scanf("%d", &a[i]);
    while(q -- ){
        int x;
        scanf("%d", &x);
        int l = 0, r = n - 1;
        //首先找到左区间的下标
        while(l < r){
            int mid = l + r >> 1;
            if(a[mid] >= x)r = mid;
            else l = mid + 1;
        }
        //判断a[l] == x
        if(a[r] != x)cout << "-1 -1" << endl;
        else {
            cout << l << ' ';//先将l输出
            r = n - 1;//重置r
            //查找ansL
            while(l < r){
                int mid = l + r + 1 >> 1;
                if(a[mid] <= x)l = mid;
                else r = mid - 1;
            }
            cout << r << endl;
        }
    }
    return 0;
}

4.2 数的三次方根

题目链接: 数的三次方根

题目分析:

这是一道实数二分的模板题,给定一个数,让我们求它的三次方根,精确到小数点后6位

思路分析:

首先题目给定的范围时-10000到10000,同时也是区间范围。
在这个区间范围内我们找一个数x,使得x * x * x等于n,则x就是n的三次方根,且x刚好是二段性的分界点,如果mid ^ 3>=n说明mid过大,则R = mid,否则L = mid。

循环条件: R - L > 1e-8
为了保证精度够高,我们通常将范围缩小到比题目要求低二次方。
在这里插入图片描述

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;
int main(){
    double n;
    cin >> n;
    double l = -10000, r = 10000;
    while(r - l > 1e-8){
        double mid = (l + r) / 2;
        if(mid * mid * mid < n)l = mid;
        else r = mid;
    }
    printf("%.6lf\n", l);
    return 0;
}
  • 71
    点赞
  • 214
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 22
    评论
二分法(二分查找)是一种在有序数组中查找某一特定元素的搜索算法。实现的基本思路是将数组从中间开始分成两部分,判断要查找的元素在哪一部分中,然后继续在该部分中进行查找,直到找到目标元素或者确定目标元素不存在为止。 下面是用 Java 实现二分法算法的示例代码: ```java public class BinarySearch { // 二分法查找指定元素在数组中的位置 public static int binarySearch(int[] arr, int target) { int left = 0; int right = arr.length - 1; while (left <= right) { int mid = (left + right) / 2; if (arr[mid] == target) { return mid; } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return -1; } // 测试二分法算法 public static void main(String[] args) { int[] arr = {1, 2, 3, 4, 5, 6, 7, 8, 9}; int target = 5; int result = binarySearch(arr, target); if (result == -1) { System.out.println("元素不在数组中"); } else { System.out.println("元素在数组中的位置为:" + result); } } } ``` 在这个示例代码中,我们定义了一个 `binarySearch` 方法来实现二分法算法。该方法接收两个参数:一个有序数组和一个目标元素。在方法中,我们定义了两个变量 `left` 和 `right` 分别表示数组的左右边界。然后使用一个 while 循环来不断缩小查找范围,直到找到目标元素或者确定目标元素不存在为止。 在循环中,我们首先计算出数组的中间位置 `mid`,然后判断目标元素是在中间位置的左边还是右边。如果目标元素比中间位置的值要大,则说明目标元素在中间位置的右边,需要将左边界向右移动;反之,如果目标元素比中间位置的值要小,则说明目标元素在中间位置的左边,需要将右边界向左移动。当左边界大于右边界时,表示目标元素不存在于数组中,此时返回 -1。 最后,我们在 `main` 方法中调用 `binarySearch` 方法来测试二分法算法。在测试中,我们定义了一个有序数组和一个目标元素,并将它们作为参数传递给 `binarySearch` 方法。如果方法返回的结果为 -1,则表示目标元素不在数组中;否则,方法返回的结果就是目标元素在数组中的位置。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

友人苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值